Synthesis of chitosan-stabilised bimetallic nanoparticles containing Fe and Ni and the reductive degradation of nimesulide

Main Article Content

Andressa Aparecida Gonçalves
Annelise França Araújo
Manoel José Mendes Pires
Rodrigo Moreira Verly
Débora Vilela Franco
Leonardo Morais da Silva

Abstract

Chitosan (CHI)-stabilised Ni–Fe bimetallic nanoparticles (bNP/CHI) were synthesised varying the content of nickel and denoted as 2-bNP/CHI, 17-bNP/CHI, and 27-bNP/CHI. The nanoparticles were characterised using several techniques and used in the removal of nimesulide. XRD and Mössbauer analyses confirmed the formation of an amorphous structure containing Fe0 and Fe2O3 while the FT-IR analysis confirmed the presence of chitosan in the nanoparticles. A very high removal of nimesulide was obtained after only 15 min of treatment with the 17-bNP/CHI system. The by-product obtained after the reductive treatment was identified using the chromatography analysis coupled to the mass spectrometry technique.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gonçalves, A. A., Araújo, A. F., Pires, M. J. M., Verly, R. M., Franco, D. V., & da Silva, L. M. (2018). Synthesis of chitosan-stabilised bimetallic nanoparticles containing Fe and Ni and the reductive degradation of nimesulide. Eclética Química, 43(1), 10–25. https://doi.org/10.26850/1678-4618eqj.v43.1.2018.p10-25
Section
Original articles

References

Campanha, M.B., Awan, A.T., de Sousa, D.N.R. Grosseli, G. M.; Mozeto, A. A.; Fadini, P.S. Environ. Sci. Pollut. Res. 22 (2015) 7936-7947. https://doi.org/10.1007/s11356-014-3929-x.

Silveira, M.A.K., Caldas, S.S., Guilherme, J.R., Costa, F.P., Guimarães, B.S., Cerqueira, M.B.R. et al., Quantification of Pharmaceuticals and Personal Care Product Residues in Surface and Drinking Water Samples by SPE and LC-ESI-MS/MS, J. Braz. Chem. Soc. 24 (2013) 1385–1395. https://doi.org/10.5935/0103-5053.20130176.

Papageorgiou, M., Kosma, C., Lambropoulou, D., Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece, Sci. Total Environ. 543 (2016) 547–569. https://doi.org/10.1016/j.scitotenv.2015.11.047.

Crane, R.A., Scott, T.B., Nanoscale zero-valent iron: future prospects for an emerging water treatment technology, J. Hazard. Mater. 211 (2012) 112–125. https://doi.org/10.1016/j.jhazmat.2011.11.073.

Liu, W.-J., Qian, T.-T., Jiang, H., Bimetallic Fe nanoparticles: Recent advances in synthesis and application in catalytic elimination of environmental pollutants, Chem. Eng. J. 236 (2014) 448–463. https://doi.org/10.1016/j.cej.2013.10.062.

Gao, Y., Wang, F., Wu, Y., Naidu, R., Chen, Z., Comparison of degradation mechanisms of microcystin-LR using nanoscale zero-valent iron (nZVI) and bimetallic Fe/Ni and Fe/Pd nanoparticles, Chem. Eng. J. 285 (2016) 459–466. https://doi.org/10.1016/j.cej.2015.09.078.

Lima, A.B., Chaves, S.C., Da Silva, L.M., Pereira, P.F., Richter, E.M., Santos, W.T.P., Determinação de nimesulida por análise por injeção em fluxo com detecção amperométrica de múltiplos pulsos, Quim. Nova 39 (2013) 1296–1302. https://doi.org/10.1590/S0100-40422013000900004.

Bernareggi, A., Clinical pharmacokinetics and metabolism of nimesulide, Inflammopharmacology 9 (2001) 8189. https://doi.org/10.1163/156856001300248353.

Agrawal, A., Tratnyek, P., Reduction of nitro aromatic compounds by zero-valent iron metal, Environ. Sci. Technol. 30 (1995) 153–160.

Fu, F.; Dionysios, D.D.; Liu, H., The use of zero-valent iron for groundwater remediation and wastewater treatment: A review, J. Hazard. Mater. 267 (2014) 194-200. https://doi.org/10.1016/j.jhazmat.2013.12.062.

Kustov, L.M.; Finashina, E.D.; Shuvalova, E.V.; Tkachenko, O.P.; Kirichenko, O.A., Pd–Fe nanoparticles stabilized by chitosan derivatives for perchloroethene dechlorination, Environ. Int. 37 (2011) 1044-1052. https://doi.org/10.1016/j.envint.2011.05.003.

Cai, Z.; Fu, J.; Du, P.; Zhao, X.; Hao, X.; Liu, W.; Zhao, D., Reduction of nitrobenzene in aqueous and soil phases using carboxymethyl cellulose stabilized zero-valent iron nanoparticles, Chem. Eng. J. 332 (2018) 227236. https://doi.org/10.1016/j.cej.2017.09.06.

Fang, Z., Chen, J., Qiu, X., Qiu, X., Cheng, W., Zhu, L., Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles, Desalination 268 (2011) 60–67. https://doi.org/10.1016/j.desal.2010.09.051.

Franco, D.V., Da Silva, L.M., Jardim, W.F., Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions, Water Air Soil Poll. 197 (2009) 49–60. https://doi.org/10.1007/s11270-008-9790-0.

Franco, D.V., Da Silva, L.M., Jardim, W.F., Chemical reduction of hexavalent chromium and its immobilisation under batch conditions using a slurry reactor, Water Air Soil Poll. 203 (2009) 305–315. https://doi.org/10.1007/s11270-009-0013-0.

Cao, J., Xu, R., Tang, H., Tang, S., Cao, M., Synthesis of monodispersed CMC-stabilizedised Fe-Cu bimetal nanoparticles for in situ reductive dechlorination of 1,2,4-trichlorobenzene, Sci. Total Environ. 409 (2011) 2336–2341. https://doi.org/10.1016/j.jece.2016.09.038.

Wang, D.R.Y., Zhou, J., Liu, L., Huang, C.J., Zhou, D., Fu, L., Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebra fish, Carbohydr. Polym 141 (2016) 204-210. https://doi.org/10.1016/j.carbpol.2016.01.012.

Liu, T., Zhao, L., Sun, D., Tan, X., Entrapment of nanoscale zero-valent iron in chitosan beds for hexavalent chromium removal from wastewater, J. Hazard. Mat. 184 (2012) 724-730. https://doi.org/10.1016/j.jhazmat.2010.08.099.

Ruela, A.L.M., Araújo, M.B., Pereira, G.R., Desenvolvimento e validação de um método analítico rápido por cromatografia líquida de alta eficiência para determinação de nimesulida em estudos de liberação in vitro, Quim. Nova 32 (2009) 165–168. https://doi.org/10.1590/S0100-40422009000100031.

Lin, Y.-T., Weng, C.-H., Chen, F.-Y., Effective removal of AB24 dye by nano/micro-size zero-valent iron, Sep. Purif. Technol. 64 (2008) 26–30. https://doi.org/10.1016/j.seppur.2008.08.012.

Han, Y., Li, W., Zhang, M., Tao, K., Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant, Chemosphere 72 (2008) 53–58. https://doi.org/10.1016/j.chemosphere.2008.02.002.

Chen, Z.X., Jin, X.Y., Chen, Z., Megharaj, M., Naidu, R., Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron, J. Colloid Interface Sci. 363 (2011) 601–607. https://doi.org/10.1016/j.jcis.2011.07.057.

Weng, X., Lin, S., Zhong, Y., Chen, Z., Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd(II) from aqueous solutions, Chem. Eng. J. 229 (2013) 27–34. https://doi.org/10.1016/j.cej.2013.05.096.

Segura, Y., Martínez, F., Melero, J.A., Fierro, J.L.G., Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final Composites, Chem. Eng. J. 269 (2015) 298–305. https://doi.org/10.1016/j.cej.2015.01.102.

Kuang, Y.; Du, J.; Zhou, R.; Chen, Z.; Megharaj, M.; Naidu, R., Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu (II) and monochlorobenzene, ‎J. Colloid Interface Sci. 447 (2015) 85–91. https://doi.org/10.1016/j.jcis.2015.01.080.

Liu, X.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R., Remediation of Direct Black G in wastewater using kaolin-supported bimetallic Fe/Ni nanoparticles, Chem. Eng. J. 223 (2013) 764-771. https://doi.org/10.1016/j.cej.2013.03.002.

Liu, Z.; Gu, C.; Ye, M.; Bian, Y.; Cheng, Y.; Wang, F.; Yang, X.; Yang, S.; Jiang, X., Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism, J. Hazard. Mater. 298 (2015) 328337. https://doi.org/10.1016/j.jhazmat.2015.05.032.

Lin, C., Shih, Y., MacFarlane, J., Amphiphilic compounds enhance the dechlorination of pentachlorophenol with Ni/Fe bimetallic nanoparticles, Chem. Eng. J. 262 (2015) 59–67. https://doi.org/10.1016/j.cej.2014.09.038.

Marchal, G., Mangin, P., Piecuch, M., Janot, C., Mössbauer study of magnetic ordering in amorphous Fe-Si alloys, J. Physique Colloq. 37 (1976) C6-763-768. https://doi.org/10.1051/jphyscol:19766160.

Tartaj, P., González-Carreño, T., Bomatí-Miguel, O., Serna, C.J., Bonville, P., Magnetic behaviour of superparamagnetic Fe nanocrystals confined inside submicron-sizedised spherical silica particles, Phys. Rev. B 69 (2004) 094401-1-094401-8. https://doi.org/10.1103/PhysRevB.69.094401.

Murad, E., Mössbauer spectroscopy of clays, soils and their mineral constituents, Clay Minerals 45 (2010) 413–430. https://doi.org/10.1180/claymin.2010.045.4.413.

van der Kraan, A. M., Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles, Phys. Status Solidi A 18 (1973) 215–226. https://doi.org/10.1002/pssa.2210180120.

Zboril, R., Mashlan, M., Petridis, D., Iron (III) Oxides from Thermal Processes Synthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications, Chem. Mater. 14 (2002) 969-982. https://doi.org/10.1021/cm0111074.

Bokare, A.D., Chikate, R.C., Rode, C.V., Paknikar, K.M., Effect of surface chemistry of Fe−Ni nanoparticles on mechanistic pathways of azo dye degradation, Environ. Sci. Technol. 41 (2007) 7437–7443. https://doi.org/10.1021/es071107q.

Grieger, K.D.; Fjordbøge A.; Hartmann, N.B.; Eriksson, E.; Bjerg, P.L.; Baun, A., Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off? Journal of Contaminant Hydrology 118 (2010) 165–183. https://doi.org/10.1016/j.jconhyd.2010.07.011.

Geng, B., Jin, Z., Li, T., Qi, X., Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water, Sci. Total Environ. 407 (2009) 4994-5000.

https://doi.org/10.1016/j.scitotenv.2009.05.051.