Abstract
The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (− a / r){1+ (1+ br )e−2br } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO.
References
S. M. Ikhdair and R. Sever (2008). Improved analytical approximation to arbitrary - state solutions of the Schrödinger equation for the hyperbolical potentials. Personal Communication.
C. Berkdemir and J. Han (2005). Chem. Phys. Lett. 409, 203 – 207.
E. Aydmer and C. Orta (2008). Quantum information entropies of the eigenstates of the eigenvalues of the Morse potential. Personal Communication.
H. Taseli (1997). Int. J. Quantum Chemistry, 63(5), 949 – 959.
M. W. Kermode, M. L. J. Allen, J. P. McTavish and A. Kervell (1984). J. Phys. G: Nucl. Phys. 773 – 783.
S. M. Ikhdair and R. Sever (2008). Bound states of a more general exponential screened coulomb potential. Personal Communication.
A. F. Nikiforov and U. B. Uvarov (1988). Special Functions of Mathematical Physics, Birkhauser: Basel.
C. Tezcan and R. Sever (2008). Quantum Physics. 15, 1 – 20.
S. Ikhdair and R. Sever (2008). Cent. Eur. J. Physics. 6, 141 – 152.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Eclética Química Journal