Bound state solutions of Schrödinger equation for a more general exponential screened coulomb potential via Nikiforov-Uvarov method

Main Article Content

Benedict Iserom Ita
Phenomena Ekuri
Idongesit Okon Isaac
Abosede Olubunmi James

Abstract

The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (− a / r){1+ (1+ br )e−2br } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO.

Metrics

Metrics Loading ...

Article Details

How to Cite
Ita, B. I., Ekuri, P., Isaac, I. O., & James, A. O. (2010). Bound state solutions of Schrödinger equation for a more general exponential screened coulomb potential via Nikiforov-Uvarov method. Eclética Química, 35(3), 103–107. https://doi.org/10.26850/1678-4618eqj.v35.3.2010.p103-107
Section
Original articles

References

S. M. Ikhdair and R. Sever (2008). Improved analytical approximation to arbitrary  - state solutions of the Schrödinger equation for the hyperbolical potentials. Personal Communication.

C. Berkdemir and J. Han (2005). Chem. Phys. Lett. 409, 203 – 207.

E. Aydmer and C. Orta (2008). Quantum information entropies of the eigenstates of the eigenvalues of the Morse potential. Personal Communication.

H. Taseli (1997). Int. J. Quantum Chemistry, 63(5), 949 – 959.

M. W. Kermode, M. L. J. Allen, J. P. McTavish and A. Kervell (1984). J. Phys. G: Nucl. Phys. 773 – 783.

S. M. Ikhdair and R. Sever (2008). Bound states of a more general exponential screened coulomb potential. Personal Communication.

A. F. Nikiforov and U. B. Uvarov (1988). Special Functions of Mathematical Physics, Birkhauser: Basel.

C. Tezcan and R. Sever (2008). Quantum Physics. 15, 1 – 20.

S. Ikhdair and R. Sever (2008). Cent. Eur. J. Physics. 6, 141 – 152.