Mathematical equation correction to spectral and transport interferences in high-resolution continuum source flame atomic absorption spectrometry: determination of lead in phosphoric acid
PDF

Keywords

mathematical equation correction approach
high-resolution continuum source flame atomic spectrometry
lead, phosphoric acid

How to Cite

Raposo Junior, J. L., de Oliveira, S. R., Nóbrega, J. A., & Gomes Neto, J. A. (2010). Mathematical equation correction to spectral and transport interferences in high-resolution continuum source flame atomic absorption spectrometry: determination of lead in phosphoric acid. Eclética Química, 35(1), 19–24. https://doi.org/10.26850/1678-4618eqj.v35.1.2010.p19-24

Abstract

In this work, a new mathematical equation correction approach for overcoming  spectral and transport interferences was proposed. The proposal was applied to  eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for  the contribution of PO, since Atotal 217.0005 nm = A Pb 217.0005 nm + A PO 217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (APO) to the total absorbance (Atotal) at 217.0005 nm: A Pb 217.0005 nm = Atotal 217.0005 nm - A PO 217.0005 nm = Atotal 217.0005 nm - k (A PO 217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 – 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained.

https://doi.org/10.26850/1678-4618eqj.v35.1.2010.p19-24
PDF

References

J.L. Raposo Jr, S.R. Oliveira, J.A. Nóbrega, J.A. Gomes Neto, Spectrochim. Acta Part B 63 (2008) 992.

PLASUS Ingenieurbüro, Plasus Specline, Version 2.13, Königsbrun, Germany, 2005.

Y. Y. Zong, P. J. Parsons, W. Slavin, Spectrochim. Acta, Part B 49 (1994) 1667.

J.B. Willis, B.T. Sturman, J. Anal. At. Spectrom. 19 (2004) 706.

S. M. Nelms, Inductively Coupled Plasma Mass Spectrometry Handbook, first ed., Wiley-Blackwell, 2005.

F. Laborda, M. P. Górriz, E. Bolea, J. R. Castillo, Spectrochim. Acta Part B 61 (2006) 433.

B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry, first ed.,Wiley-VCH, Weinheim, 2005.

B.Welz, Anal. Bioanal. Chem. 381 (2005) 69.

B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, M.G.R. Vale, J. Braz. Chem. Soc. 14 (2003) 220.

M.D. Huang, H. Becker-Ross, S. Florek, U. Heitmann, M. Okruss, J. Anal. At. Spectrom. 21 (2006) 338.

D. H. Harris, Quantitative Chemical Analysis, seventh ed., W. H. Freeman and Company, New York, 2007.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química Journal

Metrics

PDF views
316
Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202630
|