Mathematical equation correction to spectral and transport interferences in high-resolution continuum source flame atomic absorption spectrometry: determination of lead in phosphoric acid
Main Article Content
Abstract
In this work, a new mathematical equation correction approach for overcoming spectral and transport interferences was proposed. The proposal was applied to eliminate spectral interference caused by PO molecules at the 217.0005 nm Pb line, and the transport interference caused by variations in phosphoric acid concentrations. Correction may be necessary at 217.0005 nm to account for the contribution of PO, since Atotal 217.0005 nm = A Pb 217.0005 nm + A PO 217.0005 nm. This may be easily done by measuring other PO wavelengths (e.g. 217.0458 nm) and calculating the relative contribution of PO absorbance (APO) to the total absorbance (Atotal) at 217.0005 nm: A Pb 217.0005 nm = Atotal 217.0005 nm - A PO 217.0005 nm = Atotal 217.0005 nm - k (A PO 217.0458 nm). The correction factor k is calculated from slopes of calibration curves built up for phosphorous (P) standard solutions measured at 217.0005 and 217.0458 nm, i.e. k = (slope217.0005 nm/slope217.0458 nm). For wavelength integrated absorbance of 3 pixels, sample aspiration rate of 5.0 ml min-1, analytical curves in the 0.1 – 1.0 mg L-1 Pb range with linearity better than 0.9990 were consistently obtained.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
J.L. Raposo Jr, S.R. Oliveira, J.A. Nóbrega, J.A. Gomes Neto, Spectrochim. Acta Part B 63 (2008) 992.
PLASUS Ingenieurbüro, Plasus Specline, Version 2.13, Königsbrun, Germany, 2005.
Y. Y. Zong, P. J. Parsons, W. Slavin, Spectrochim. Acta, Part B 49 (1994) 1667.
J.B. Willis, B.T. Sturman, J. Anal. At. Spectrom. 19 (2004) 706.
S. M. Nelms, Inductively Coupled Plasma Mass Spectrometry Handbook, first ed., Wiley-Blackwell, 2005.
F. Laborda, M. P. Górriz, E. Bolea, J. R. Castillo, Spectrochim. Acta Part B 61 (2006) 433.
B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry, first ed.,Wiley-VCH, Weinheim, 2005.
B.Welz, Anal. Bioanal. Chem. 381 (2005) 69.
B. Welz, H. Becker-Ross, S. Florek, U. Heitmann, M.G.R. Vale, J. Braz. Chem. Soc. 14 (2003) 220.
M.D. Huang, H. Becker-Ross, S. Florek, U. Heitmann, M. Okruss, J. Anal. At. Spectrom. 21 (2006) 338.
D. H. Harris, Quantitative Chemical Analysis, seventh ed., W. H. Freeman and Company, New York, 2007.