Advantages of the use of heterogeneous catalyst for Huisgen cycloaddition reaction: synthesis and application of new metalorganic material capable of regeneration and reuse

Main Article Content

Mônica Freire Belian
Moara Targino da Silva
Aline de Andrade Alves
Ronaldo Nascimento de Oliveira
Wagner Eduardo da Silva

Abstract

This works evaluates the catalytic capacity of metalorganic materials synthesized, based on Cu+ and ambidentade ligand in Huisgen cycloaddition reaction. The synthesis of 1,2,3-triazole was made using CuCl and CuI salts, and the [Cu(4,4’-dipy)]Cl and [Cu(4,4’-dipy)]I compounds as catalysts, with or without base catalysis by triethylamine. The copper salts and compounds lead to formation of the desired triazole product; however, in the synthesis mediated by [Cu(4,4’-dipy)]I does not generate the product, even after 48 h of reaction. The reaction with [Cu(4,4’-dipy)]Cl mediated or not by triethylamine showed high yields of 88 % and 70 %, respectively. The [Cu(4,4’-dipy)]Cl compounds was reused five times, and regenerated by ascorbic acid, maintaining thus, the same reaction yield.

Metrics

Metrics Loading ...

Article Details

How to Cite
Belian, M. F., da Silva, M. T., Alves, A. de A., de Oliveira, R. N., & da Silva, W. E. (2018). Advantages of the use of heterogeneous catalyst for Huisgen cycloaddition reaction: synthesis and application of new metalorganic material capable of regeneration and reuse. Eclética Química, 43(1), 39–47. https://doi.org/10.26850/1678-4618eqj.v43.1.2018.p39-47
Section
Original articles

References

Chen, J.C., Luo, W.Q., Wang, H.D., Xiang, J.M., Jin, H.F., Chen, F., Cai, Z.W., A versatile method for the preparation of end-functional polymers onto SiO2 nanoparticles by a combination of surface-initiated ATRP and Huisgen [3 + 2] cycloaddition, Applied Surface Science 256 (8) (2010) 2490–2495. https://doi.org/10.1016/j.apsusc.2009.10.093.

Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276–279. https://doi.org/10.1038/46248.

Rowsell, J.L.C., Yaghi, O. M., Metal–organic frameworks: a new class of porous materials, Micropor. Mesopor. Mater. 73 (1-2) (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.

Li, Z.-Q., Qiu, L.-G., Xu, T., Wu, Y., Wang, W., Wu, Z.-Y., Jiang, X., Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method, Mater. Lett. 63 (1) (2009) 78–80. https://doi.org/10.1016/j.matlet.2008.09.010.

Dhakshinamoorthy, A., Alvaro, M., Corma, A., Garcia, H., Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions, Dalton Trans. 40 (2011) 6344–6360. https://doi.org/10.1039/c1dt10354g.

Phan, N. T. S., Le, K. K. A., Phan, T. D., MOF-5 as an efficient heterogeneous catalyst for Friedel–Crafts alkylation reactions, Appl. Catal. A: Gen. 382 (2) (2010) 246–253. https://doi.org/10.1016/j.apcata.2010.04.053.

Ravon, U., Savonnet, M., Aguado, S., Domine, M.E., Janneau, E., Farrusseng, D., Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects, Micropor. Mesopor. Mater. 129 (3) (2010) 319–329. https://doi.org/10.1016/j.micromeso.2009.06.008.

Nguyen, L. T. L., Nguyen, C. V., Dang, G. H., Le, K. K. A., Phan, N. T. S., Towards applications of metal–organic frameworks in catalysis: Friedel–Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst, J. Mol. Catal. A. Chem. 349 (1-2) (2011) 28–35. https://doi.org/10.1016/j.molcata.2011.08.011.

Dhakshinamoorthy, A., Alvaro, M., Garcia, H., Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO, ACS Catal. 1 (1) (2011) 48–53. https://doi.org/10.1021/cs1000703.

Xamena, F. X. L. I., Casanova, O., Tailleur, R. G., Garcia, A. C. H., Metal organic frameworks (MOFs) as catalysts: A combination of Cu2+ and Co2+ MOFs as an efficient catalyst for tetralin oxidation, J. Catal. 255 (2) (2008) 220–227. https://doi.org/10.1016/j.jcat.2008.02.011.

Liu, H., Liu, Y., Li, Y., Tang, Z., Jiang, H., Metal−Organic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols, J. Phys. Chem. C 114 (2010) 13362–13369. https://doi.org/10.1021/jp105666f.

Kleist, W., Maciejewski, M., Baiker, A., MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application, Thermochim. Acta 499 (1-2) (2010) 71–78. https://doi.org/10.1016/j.tca.2009.11.004.

Dhakshinamoorthy, A., Alvaro, M., Garcia, H., Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide, J. Catal. 267 (1) (2009) 1–4. https://doi.org/10.1016/j.jcat.2009.08.001.

Wang, W., Li, Y., Zhang, R., He, D., Liu, H., Liao, S., Metal-organic framework as a host for synthesis of nanoscale Co3O4 as an active catalyst for CO oxidation, Catal. Commun. 12 (10) (2011) 875–879. https://doi.org/10.1016/j.catcom.2011.02.001.

Song, F., Wang, C., Falkowski, J. M., Ma, L., Lin, W., Isoreticular Chiral Metal−Organic Frameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes, J. Am. Chem. Soc. 132 (43) (2010) 15390–15398. https://doi.org/10.1021/ja1069773.

Cho, S.-H., Ma, B., Nguyen, S. T., Hupp, J. T., Albrecht-Schmitt, T. E., A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation, Chem. Commun. (24) (2006) 2563–2565. https://doi.org/10.1039/B600408C.

Brown, K., Zolezzi, S., Aguirre, P., Venegas-Yazigi, D., Paredes-García, V., Baggio, R., Novak, M. A., Spodine, E., [Cu(H2btec)(bipy)]∞: a novel metal organic framework (MOF) as heterogeneous catalyst for the oxidation of olefins, Dalton Trans. (2009) 1422–1427. https://doi.org/10.1039/B810414J.

Opelt, S., Turk, S., Dietzsch, E., Henschel, A., Kaskel, S., Klemm, E., Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst, Catal. Commun. 9 (2008) 1286–1290. https://doi.org/10.1016/j.catcom.2007.11.019.

Xamena, F. X. L. I., Abad, A., Corma, A., Garcia, H., MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF, J. Catal. 250 (2007) 294–298. https://doi.org/10.1016/j.jcat.2007.06.004.

Huang, Y., Zheng, Z., Liu, T., Lü, J., Lin, Z., Li, H., Cao, R., Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction, Catal. Commun. 14 (2011) 27–31. https://doi.org/10.1016/j.catcom.2011.07.004.

Gao, S., Zhao, N., Shu, M., Che, S., Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand- and copper-free Sonogashira coupling reaction, Appl. Catal. A: Gen. 388 (2010) 196–201. https://doi.org/10.1016/j.apcata.2010.08.045.

Zhou, Y., Song, J., Liang, S., Hu, S., Liu, H., Jiang, T., Han, B., Metal-organic frameworks as an acid catalyst for the synthesis of ethyl methyl carbonate via transesterification, J. Mol. Catal. A 308 (2009) 68–75. https://doi.org/10.1016/j.molcata.2009.03.027.

Neogi, S., Sharma, M. K. and Bharadwaj, P. K., Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers, J. Mol. Catal. A 299 (1-2) (2009) 1–4. https://doi.org/10.1016/j.molcata.2008.10.008.

Gascon, J., Aktay, U., Hernandez-Alonso, M. D., Klink, G. P. M. V., Kapteijn, F., Amino-based metal-organic frameworks as stable, highly active basic catalysts, J. Catal. 261 (2009) 75–87. https://doi.org/10.1016/j.jcat.2008.11.010.

Oxford, G. A. E., Dubbeldam, D., Broadbelt, L. J., Snurr, R. Q., Elucidating steric effects on enantioselective epoxidation catalyzed by (salen)Mn in metal-organic frameworks, J. Mol. Catal. A. Chem. 334 (1-2) (2011) 89–97. https://doi.org/10.1016/j.molcata.2010.11.001.

Dewa, T., Saiki, T., Aoyama, Y., Enolization and Aldol Reactions of Ketone with a La3+-Immobilized Organic Solid in Water. A Microporous Enolase Mimic, J. Am. Chem. Soc. 123 (2001) 502–503. https://doi.org/10.1021/ja001140b.

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., Vos, D. D., An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation, Chem. Commun. 47 (5) (2011) 1511–1523. https://doi.org/10.1039/C0CC03038D.

Luz, I., Xamena, F. X. L. I., Corma, A., Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts, J. Catal. 276 (2010) 134–140. https://doi.org/10.1016/j.jcat.2010.09.010.

Luz, I., Xamena, F. X. L. I., Corma, A., Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines, J. Catal. 285 (2012) 285–291. https://doi.org/10.1016/j.jcat.2011.10.001.

Rostovtsev, V. V., Green, L. G., Fokin, V. V., Sharpless, K. B., Angew. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes, Chem. Int. Ed. 41 (2002) 2596 – 2599. https://doi.org/10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4.

Tornøe, C. W., Christensen, C., Meldal, M., Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides, J. Org. Chem. 67 (2002) 3057–3064. https://doi.org/10.1021/jo011148j.

da Silva, M. T., de Oliveira, R. N., Valença, W. O., Barbosa, F. C. G., da Silva, M. G., Camara, C.A., Synthesis of N-Substituted Phthalimidoalkyl 1H-1,2,3-Triazoles: A Molecular Diversity Combining Click Chemistry and Ultrasound Irradiation, J. Braz. Chem. Soc. 23 (2012) 1839–1843. https://doi.org/10.1590/S0103-50532012005000053.

Barbosa, F. C. G., de Oliveira, R. N., Synthesis of a New Class of Triazole-Linked Benzoheterocycles via 1,3-Dipolar Cycloaddition, J. Braz. Chem. Soc. 22 (2011) 592–597. https://doi.org/10.1590/S0103-50532011000300025.

Sirion U., Lee, J. H., Bae, Y. J., Kim, H. J., Lee, B. S., Chi, D. Y., Azide/alkyne resins for quick preparation of 1,4-disubstituted 1,2,3-triazoles, Bull. Korean Chem. Soc. 31 (2010) 1843-1847. https://doi.org/10.5012/bkcs.2010.31.7.1843.

For a review of transition metal-catalyzed acetylenic coupling, see: Siemsen, P., Livingston, R. C. and Diederich, F., Acetylenic Coupling: A Powerful Tool in Molecular Construction, Angew. Chem. Int. Ed. 39 (2000) 2632–2657. https://doi.org/10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F.

For a common example, see: Sonogashira, K., Tohda, Y., Hagihara, N., A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Lett. 16 (1975) 4467 – 4470. https://doi.org/10.1016/S0040-4039(00)91094-3.

Himo, F., Lovell, T., Hilgraf, R., Rostovtsev, V. V., Noodleman, L., Sharpless, K. B., Fokin, V. V., Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates, J. Am. Chem. Soc. 127 (2005) 210–216. https://doi.org/10.1021/ja0471525.

J. Bastide, O. Henri-Rousseau, in Chemistry of the Carbon−Carbon Triple Bond (Ed.: S. Patai), Interscience Publishers, London, 1978, p. 447–552.

Collman, J. P., Devaraj, N. K., Chidsey, C. E. D., “Clicking” Functionality onto Electrode Surfaces, Langmuir 20 (2004) 1051–1053. https://doi.org/10.1021/la0362977.

Rodinov, V. O., Fokin, V. V., Finn, M. G., Mechanism of the ligand-free CuI-catalyzed azide-alkyne cycloaddition reaction, Angew. Chem. Int. Ed. 44 (2005) 2210–2215. https://doi.org/10.1002/anie.200461496.

Bock, V. D., Hiemstra, H., Maarseveen, J. H., CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective, Eur. J. Org. Chem. (2006) 51–68. https://doi.org/10.1002/ejoc.200500483.