Extraction and characterization of essential oils from fresh and dry leaves of Pinus elliottii
Main Article Content
Abstract
Essential oils are secondary metabolites whose properties have been studied mainly with emphasis on antimicrobial, biological and pharmaceutical fields, such as antibacterial, antifungal, antiviral, pest control and insect repellents. Essential oils from fresh and dry leaves of Pinus elliottii were extracted by hydrodistillation, chemically characterized and quantified by gas chromatography coupled to a mass spectrometer. The plant leaves were collected in a reforested area in the south of the state of Minas Gerais, Brazil. The two main components in both characterized essential oils were Germacrene D and β-Pinene. In the essential oil from fresh foliage, Germacrene D (47.71%) was the majority component, while in the essential oil from dry foliage, β-Pinene (30.06%) was the majority component. Literature data point that essential oils with large amount of Germacrene D may act as antibacterial and repellent agents. Additionally, literature data also support that essential oils with large amount of β-Pinene exhibit several biological properties, similar to the Germacrene D, in addition with a wide range of medicinal and pharmacological activities. Thus, from our results and with literature data, it is possible to elucidate new potential applications to essential oils from fresh and dry leaves of Pinus elliottii.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Grant numbers 02390/2018 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 311183/2022
References
Adams, R. P. Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation, 2007.
Al-Ghanim, K. A.; Krishnappa, K.; Pandiyan, J.; Nicoletti, M.; Gurunathan, B.; Govindarajan, M. Insecticidal Potential of Matricaria chamomilla’s Essential Oil and Its Components (E)-β-Farnesene, Germacrene D, and α-Bisabolol Oxide A against Agricultural Pests, Malaria, and Zika Virus Vectors. Agric. 2023, 13, 779. https://doi.org/10.3390/agriculture13040779
Alma, M. H.; Nitz, S.; Kolmannsberger, H.; Digrak, M.; Efe, F. T.; Yilmaz, N. Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish Pistachio (Pistacia vera l.). J. Agric. Food Chem. 2004, 52 (12), 3911–3914. https://doi.org/10.1021/jf040014e
Al-Saimary, I.; Bakr, S.; Khudaier, B.; Abass, Y. Efficiency of antibacterial agents extracted from Thymus vulgaris L. (Lamiaceae). Int. J. Nutr. Wellness. 2006, 4 (1), 1–5. https://doi.org/10.5580/269
Arya, S.; Kumar, R.; Prakash, O.; Rawat, A.; Mahawer, S. K.; Rawat, D. S.; de Oliveira, M. Hedychium coronarium J. Koenig: Traditional Uses, Phytochemistry, Biological Activities and Future Aspects. Curr. Org. Chem. 2022, 26 (18), 1676–1690. https://doi.org/10.2174/1385272827666221212161320
Awouafack, M. D.; Tane, P.; Kuete, V.; Eloff, J. N. 2 - Sesquiterpenes from the Medicinal Plants of Africa. In: Kuete, V., Ed., Medicinal plant research in Africa: pharmacology and chemistry. Elsevier, 2013; pp. 33–103. https://doi.org/10.1016/B978-0-12-405927-6.00002-3
Baptista-Silva, S.; Borges, S.; Ramos, O. L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: a review. J. Essent. Oil Res. 2020, 32 (4), 279–295. https://doi.org/10.1080/10412905.2020.1746698
Burt, S. Essential oils: their antibacterial properties and potential applications in foods - a review. Int. J. Food Microbiol. 2004, 94 (3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Chaieb, I.; Ben Hamouda, A.; Tayeb, W.; Zarrad, K.; Bouslema, T.; Laarif, A. The Tunisian Artemisia Essential Oil for Reducing Contamination of Stored Cereals by Tribolium castaneum. Food Technol. Biotechnol. 2018, 56 (2), 247–256. https://doi.org/10.17113/ftb.56.02.18.5414
Chakravarty, I.; Parmar, V. M.; Mandavgane, S. A. Current trends in essential oil (EO) production. Biomass Conv. Bioref. 2023, 13, 15311–15334. https://doi.org/10.1007/s13399-021-01963-3
El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E. H. A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F. N. R.; Elaissari, A. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483 (1–2), 220–243. https://doi.org/10.1016/j.ijpharm.2014.12.069
El Mokni, R.; Majdoub, S.; Chaieb, I.; Jlassi, I.; Joshi, R. K.; Hammami, S. Chromatographic analysis, antimicrobial and insecticidal activities of the essential oil of Phlomis floccosa D. Don. Biomed Chromatogr. 2019, 33 (10). https://doi.org/10.1002/bmc.4603
Gobbo-Neto, L.; Lopes, N. P. Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Quim Nova. 2007, 30 (2), 374–381. https://doi.org/10.1590/S0100-40422007000200026
Imanuddin, R.; Hidayat, A.; Rachmat, H. H.; Turjaman, M.; Pratiwi, P.; Nurfatriani, F.; Indrajaya, Y.; Susilowati, A. Reforestation and Sustainable Management of Pinus merkusii Forest Plantation in Indonesia: A Review. Forests. 2020, 11 (12), 1235. https://doi.org/10.3390/f11121235
Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemoth. 2001, 47 (5), 565–573. https://doi.org/10.1093/jac/47.5.565
Instituto Brasileiro de Geografia e Estatística (IBGE). Produção da Extração Vegetal e da Silvicultura (Pevs). IBGE, 2021.
Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The genus Pinus: a comparative study on the needle essential oil composition of 46 pine species. Phytochem. Rev. 2014, 13 (4), 741–768. https://doi.org/10.1007/s11101-014-9338-4
Jesus, R. M. The Need for Reforestation. In: International Workshop Large-Scale Reforestation. Corvallis, Oregon, United States, 1990.
Kilani, S.; Abdelwahed, A.; Ben Ammar, R.; Hayder, N.; Ghedira, K.; Chraief, I.; Hammami, M.; Chekir-Ghedira, L. Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. J. Essent. Oil Res. 2005, 17 (6), 695–700. https://doi.org/10.1080/10412905.2005.9699035
Kurti, F.; Giorgi A.; Beretta, G.; Mustafa, B.; Gelmini, F.; Testa, C.; Angioletti, S.; Giupponi, L.; Zilio, E.; Pentimalli, D.; Hajdari, A. Chemical composition, antioxidant and antimicrobial activities of essential oils of different Pinus species from Kosovo. J. Essent. Oil Res. 2019, 31 (4), 263–275. https://doi.org/10.1080/10412905.2019.1584591
Lunguinho, A. D.; Cardoso, M. D.; Ferreira, V. R. F.; Konig, I. F. M.; Goncalves, R. R. P.; Brandao, R. M.; Rodrigues Silva Caetano, A.; Nelson, D. L.; Remedio, R. N. Acaricidal and repellent activity of the essential oils of Backhousia citriodora, Callistemon viminalis and Cinnamodendron dinisii against Rhipicephalus spp. Vet. Parasitol. 2021, 300, 109594. https://doi.org/10.1016/j.vetpar.2021.109594
Mayaud, L.; Carricajo, A.; Zhiri, A.; Aubert, G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett. Appl. Microbiol. 2008, 47 (3), 167–173. https://doi.org/10.1111/j.1472-765X.2008.02406.x
Modzelewska, A.; Sur, S.; Kumar, S. K.; Khan, S. R. Sesquiterpenes: natural products that decrease cancer growth. Curr. Med. Chem. Anticancer Agents. 2005, 5 (5), 477–499. https://doi.org/10.2174/1568011054866973
National Institute of Standards and Technology (NIST). Mass Spectral Library and Search/ Analysis Programs. NIST/EPA/NIH, 2010.
Ning, C.; Mueller, G. M.; Egerton-Warburton, L. M.; Xiang, W. H.; Yan, W. D. Host Phylogenetic Relatedness and Soil Nutrients Shape Ectomycorrhizal Community Composition in Native and Exotic Pine Plantations. Forests. 2019, 10 (3), 263. https://doi.org/10.3390/f10030263
Noge, K.; Becerra, J. X. Germacrene D, a common sesquiterpene in the genus Bursera (Burseraceae). Molecules. 2009, 14 (12), 5289–5297. https://doi.org/10.3390/molecules14125289
Oliveira-Tintino, C. D. M.; Pessoa, R. T.; Fernandes, M. N. M.; Alcântara, I. S.; Silva, B. A. F.; Oliveira, M. R. C.; de Menezes, I. R. A. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine. 2018, 41, 82–95. https://doi.org/10.1016/j.phymed.2018.02.004
Richardson, D. M.; Rundel, P. W.; Jackson, S. T.; Teskey, R. O.; Aronson, J.; Bytnerowicz, A.; Proches, S. Human impacts in pine forests: Past, present, and future. Annual Review of Ecology Evolution and Systematics. 2007, 38, 275–297. https://doi.org/10.1146/annurev.ecolsys.38.091206.095650
Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; Sharifi-Rad, J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomol. 2019, 9 (11), 738. https://doi.org/10.3390/biom9110738
Satoh, K.; Nakahara, A.; Mukunoki, K.; Sugiyama, H.; Saito, H.; Kamigaito, M. Sustainable cycloolefin polymer from pine tree oil for optoelectronics material: living cationic polymerization of beta-pinene and catalytic hydrogenation of high-molecular-weight hydrogenated poly(beta-pinene). Polym Chem-UK. 2014, 5 (9), 3222–3230. https://doi.org/10.1039/C3PY01320K
Silva, A. C. R.; Lopes, P. M.; de Azevedo, M. M. B.; Costa, D. C. M.; Alviano, C. S.; Alviano, D. S. Biological Activities of alpha-Pinene and beta-Pinene Enantiomers. Molecules. 2012, 17 (6), 6305–6316. https://doi.org/10.3390/molecules17066305
Teixeira, M. L.; Cardoso, M. d. G.; Figueiredo, A. C. S.; Moraes, J. C.; Assis, F. A.; de Andrade, J.; de Albuquerque, L. R. M. Essential Oils from Lippia origanoides Kunth. and Mentha spicata L.: Chemical Composition, Insecticidal and Antioxidant Activities. Am. J. Plant. Sci. 2014, 5 (9), 1181–1190. https://doi.org/10.4236/ajps.2014.59131
Thomsett, M. R.; Moore, J. C.; Buchard, A.; Stockman, R. A.; Howdle, S. M. New renewably-sourced polyesters from limonene-derived monomers. Green Chem. 2019, 21 (1), 149–156. https://doi.org/10.1039/C8GC02957A
Tiwari, B. K.; Valdramidis, V. P.; O'Donnell, C. P.; Muthukumarappan, K.; Bourke, P.; Cullen, P. J. Application of Natural Antimicrobials for Food Preservation. J. Agr. Food Chem. 2009, 57 (14), 5987–6000. https://doi.org/10.1021/jf900668n
Van Den Dool, H.; Dec. Kratz, P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr A. 1963, 11, 463–471. https://doi.org/10.1016/S0021-9673(01)80947-X
Van Der Werf, M. J.; de Bont, J. A. M.; Leak, D. J. Opportunities in microbial biotransformation of monoterpenes. In: Berger, R. G., et al. Biotechnology of Aroma Compounds: Advances in Biochemical Engineering/Biotechnology, vol 55. Springer, 1997; pp. 147–177. https://doi.org/10.1007/BFb0102065
Vespermann, K. A. C.; Paulino, B. N.; Barcelos, M. C. S.; Pessoa, M. G.; Pastore, G. M.; Molina, G. Biotransformation of alpha- and beta-pinene into flavor compounds. Appl. Microbiol. Biot. 2017, 101 (5), 1805–1817. https://doi.org/10.1007/s00253-016-8066-7
Warnke, P. H.; Becker, S. T.; Podschun, R.; Sivananthan, S.; Springer, I. N.; Russo, P. A. J.; Sherry, E. The battle against multi-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J. Cranio. Maxill. Surg. 2009, 37 (7), 392–397. https://doi.org/10.1016/j.jcms.2009.03.017
Winnacker, M. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers. Angew Chem Weinheim Bergstr Ger. 2018, 57 (44), 14362–14371. https://doi.org/10.1002/anie.201804009
Zhou, J. Y.; Tang, F. D.; Mao, G. G.; Bian, R. I. Effect of alpha-pinene on nuclear translocation of NF-kappa B in THP-1 cells. Acta Pharm Sinic. 2004, 25 (4), 480–484.