Last decade insights on cemented carbides: A review on alternative binders, new consolidation techniques and advanced characterization
Main Article Content
Abstract
Cemented carbide alloys are well known powder metallurgically processed materials used for a wide range of tooling and components that require a good balance of hardness and fracture toughness, together with wear resistance. After 100 years of the first patent, research and development within this area continues to fulfil more demanding applications and adapt to new requirements. The last decade especially has witnessed important advances. In that sense, Co-free compositions are being studied due to the health issues that its use implies and its criticality in the supply chain. Secondly, the steps towards near-net-shape components by means of additive manufacturing technologies to avoid waste of powder and the technological advance of fast sintering processes are promising. Finally, new microstructural and mechanical characterization methods at micro and nanoscale provide helpful insights for a better understanding of these materials under performance.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Altıparmak, S. C.; Yardley, V. A.; Shi, Z.; Lin, J. Extrusion-based additive manufacturing technologies: State of the art and future perspectives. J. Manufact. Proc. 2022, 83, 607–636. https://doi.org/10.1016/j.jmapro.2022.09.032
Beake, B. D. Nano- and Micro-Scale Impact Testing of Hard Coatings: A Review. Coatings. 2022, 12 (6), 793. https://doi.org/10.3390/COATINGS12060793
Berger, C.; Pötschke, J.; Scheithauer, U.; Michaelis, A. Correlation of Different Cemented Carbide Starting Powders with the Resulting Properties of Components Manufactured via Binder Jetting. Metals. 2023, 13, 1848. https://doi.org/10.3390/met13111848
Beste, U.; Hammerström, L.; Engqvist, H.; Rimlinger, S.; Jacobson S. Particle erosion of cemented carbides with low Co content. Wear. 2001, 250 (1–12), 809–817. https://doi.org/10.1016/S0043-1648(01)00735-9
Bonny, K.; De Baets, P.; Quintelier, J.; Vleugels, J.; Jiang, D.; VanderBiest, O.; Lauwers, B.; Liu, W. Surface finishing: Impact on tribological characteristics of WC–Co hardmetals. Tribol. Int. 2010, 43 (1–2), 40–54. https://doi.org/10.1016/j.triboint.2009.04.029
Booklet. ADDITIVE MANUFACTURING TECHNOLOGY A Guide for Designers and Engineers. EPMA, 2019. https://www.epma.com/european-additive-manufacturing-group (accessed 2024-01-01).
Boukantar, A. R.; Djerdjare, B.; Guiberteau, F.; Ortiz, A. L. A Critical Comparison of the Tribocorrosive Performance in Highly-Alkaline Wet Medium of Ultrafine-Grained WC Cemented Carbides with Co, Co+Ni, or Co+Ni+Cr Binders. Int. J. Refract. Metals Hard Mater. 2021, 95, 105452. https://doi.org/10.1016/j.ijrmhm.2020.105452
Bram, M.; Beynet, Y.; Van Der Laan, A.; Neubauer, E.; Guillon, O.; Huber, J.; Trapp, J.; Keszler, M.; Luthardt, B.; Hennicke, J. Introduction to Field-Assisted Sintering Technology/Spark Plasma Sintering (FAST/SPS); 2022.
Carreño-Morelli, E.; Alveen, P.; Moseley, S.; Rodriguez-Arbaizar, M.; Cardoso, K. Three-Dimensional Printing of Hard Materials. Int. J. Refract. Metals Hard Mater. 2020, 87, 105110. https://doi.org/10.1016/j.ijrmhm.2019.105110
Chen, W. H.; Lin, H. T.; Nayak, P. K.; Huang, J. L. Material Properties of Tungsten Carbide-Alumina Composites Fabricated by Spark Plasma Sintering. Ceram. Int. 2014, 40 (9 PART B), 15007–15012. https://doi.org/10.1016/j.ceramint.2014.06.102
Chen, R.; Zheng, S.; Zhou, R.; Wei, B.; Yang, G.; Chen, P.; Cheng, J. Development of Cemented Carbides with CoxFeNiCrCu High-Entropy Alloyed Binder Prepared by Spark Plasma Sintering. Int. J. Refract. Metals Hard Mater. 2022, 103, 105751. https://doi.org/10.1016/J.IJRMHM.2021.105751
Chen, C.; Huang, B.; Liu, Z.; Li, Y.; Zou, D.; Liu, T.; Chang, Y.; Chen, L. Additive Manufacturing of WC-Co Cemented Carbides: Process, Microstructure, and Mechanical Properties. Additive Manufacturing. 2023, 63, 103410. https://doi.org/10.1016/j.addma.2023.103410
Chuvil’deev, V. N.; Blagoveshchenskiy, Y. V.; Nokhrin, A. V.; Boldin, M. S.; Sakharov, N. V.; Isaeva, N. V.; Shotin, S. V.; Belkin, O. A.; Popov, A. A.; Smirnova, E. S.; Lantsev, E. A. Spark Plasma Sintering of Tungsten Carbide Nanopowders Obtained through DC Arc Plasma Synthesis. J. Alloys Compd. 2017, 708, 547–561. https://doi.org/10.1016/j.jallcom.2017.03.035
Chychko, A.; García, J.; Collado Ciprés, V.; Holmström, E.; Blomqvist, A. HV-KIC Property Charts of Cemented Carbides: A Comprehensive Data Collection. Int. J. Refract. Metals Hard Mater. 2022, 103, 105763. https://doi.org/10.1016/j.ijrmhm.2021.105763
Cinca, N.; Beake, B. D.; Harris, A. J.; Tarrés, E. Micro-Scale Impact Testing on Cemented Carbides. Int. J. Refract. Metals Hard Mater. 2019, 84, 105045. https://doi.org/10.1016/J.IJRMHM.2019.105045
Cramer, C. L.; Aguirre, T. G.; Wieber, N. R.; Lowden, R. A.; Trofimov, A. A.; Wang, H.; Yan, J.; Paranthaman, M. P.; Elliott, A. M. Binder Jet Printed WC Infiltrated with Pre-Made Melt of WC and Co. Int. J. Refract. Metals Hard Mater. 2020, 87, 105137. https://doi.org/10.1016/j.ijrmhm.2019.105137
Csanádi, T.; Bľanda, M.; Naughton-Duszová, A.; Chinh, N. Q.; Szommer, P.; Dusza, J. Deformation Characteristics of WC Micropillars. J. Eur. Ceram. Soc. 2014, 34 (15), 4099–4103. https://doi.org/10.1016/J.JEURCERAMSOC.2014.05.045
Csanádi, T.; Bl’Anda, M.; Chinh, N. Q.; Hvizdoš, P.; Dusza, J. Orientation-Dependent Hardness and Nanoindentation-Induced Deformation Mechanisms of WC Crystals. Acta Mater. 2015, 83, 397–407. https://doi.org/10.1016/J.ACTAMAT.2014.09.048
Csanádi, T.; Vojtko, M.; Dusza, J. Deformation and Fracture of WC Grains and Grain Boundaries in a WC-Co Hardmetal during Microcantilever Bending Tests. Int. J. Refract. Metals Hard Mater. 2020, 87, 105163. https://doi.org/10.1016/J.IJRMHM.2019.105163
Davis, J. R. ASM Specialty Handbook: Tool Materials; ASM International, 1995.
Dong, D.; Xiang, X.; Huang, B.; Xiong, H.; Zhang, L.; Shi, K.; Liao, J. Microstructure and Properties of WC-Co/CrMnFeCoNi Composite Cemented Carbides. Vacuum. 2020, 179, 109571. https://doi.org/10.1016/J.VACUUM.2020.109571
Elizalde, M. R.; Ocaña, I.; Alkorta, J.; Sánchez-Moreno, J. M. Mechanical Strength Assessment of Single WC-WC Interfaces Present in WC-Co Hardmetals through Micro-Beam Bending Experiments. Int. J. Refract. Metals Hard Mater. 2018, 72, 39–44. https://doi.org/10.1016/J.IJRMHM.2017.12.009
Elliot, A.; Cramer, C.; Nandwana, P. Binder Jetting and Sintering in Additive Manufacturing; USDOE Office of Energy Efficiency and Renewable Energy (EERE), 2020. https://doi.org/10.31399/asm.hb.v24.a0006569
Enneti, R. K.; Prough, K. C. Wear Properties of Sintered WC-12%Co Processed via Binder Jet 3D Printing (BJ3DP). Int. J. Refract. Metals Hard Mater. 2019, 78, 228–232. https://doi.org/10.1016/j.ijrmhm.2018.10.003
Eriksson, M.; Radwan, M.; Shen, Z. Spark Plasma Sintering of WC, Cemented Carbide and Functional Graded Materials. Int. J. Refract. Metals Hard Mater. 2013, 36, 31–37. https://doi.org/10.1016/j.ijrmhm.2012.03.007
Ettmayer, P.; Kolaska, H.; Ortner, H. M. History of Hardmetals. In Comprehensive Hard Materials Vol. 1-3; Sarin, V.; Mari, D.; Llanes, L.; Nebel, C. E., Eds.; Elsevier, 2014; pp 3–27. https://doi.org/10.1017/CBO9781107415324.004
Exner, H. E. Physical and Chemical Nature of Cemented Carbides. Int. Mat. Rev. 1979, 4, 1149–1173. https://doi.org/10.1179/imtr.1979.24.1.149
Fathipour, Z.; Hadi, M.; Maleki, M.R.; Fernandes, F. Effect of Binder on Oxidation Properties of Tungsten Carbides: A Review by a Conceptual Classification Approach. Ceramics. 2024, 7, 166–191. https://doi.org/10.3390/ceramics7010011
Fayyaz, A.; Muhamad, N.; Sulong, A. B.; Rajabi, J.; Wong, Y. N. Fabrication of Cemented Tungsten Carbide Components by Micro-Powder Injection Moulding. J. Mater. Process Technol. 2014, 214 (7), 1436–1444. https://doi.org/10.1016/j.jmatprotec.2014.02.006
Fayyaz, A.; Muhamad, N.; Sulong, A. B. Microstructure and Physical and Mechanical Properties of Micro Cemented Carbide Injection Moulded Components. Powder Technol. 2018, 326, 151–158. https://doi.org/10.1016/j.powtec.2017.12.011
Furberg, A.; Arvidsson, R.; Molander, S. Environmental Life Cycle Assessment of Cemented Carbide (WC-Co) Production. J. Clean Prod. 2019, 209, 1126–1138. https://doi.org/10.1016/j.jclepro.2018.10.272
Gant, A. J.; Gee, M. G.; May, A. T. The Evaluation of Tribo-Corrosion Synergy for WC-Co Hardmetals in Low Stress Abrasion. Wear. 2004, 256 (5), 500–516. https://doi.org/10.1016/j.wear.2003.04.001
Gant, A. J.; Gee, M. G.; Gohil, D. D.; Jones, H. G.; Orkney, L. P. Use of FIB/SEM to Assess the Tribo-Corrosion of WC/Co Hardmetals in Model Single Point Abrasion Experiments. Tribol. Int. 2013, 68, 56–66. https://doi.org/10.1016/J.TRIBOINT.2012.11.008
García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B. Cemented Carbide Microstructures: A Review. Int. J. Refract. Metals Hard Mater. 2019, 80, 40–68. https://doi.org/10.1016/j.ijrmhm.2018.12.004
Gee, M. G.; Gant, A.; Roebuck, B. Wear Mechanisms in Abrasion and Erosion of WC / Co and Related Hardmetals. Wear. 2007, 263, 137–148. https://doi.org/10.1016/j.wear.2006.12.046
Gee, M. G.; Nimishakavi, L. Model Single Point Abrasion Experiments on WC/Co Hardmetals. Int. J. Refract. Metals Hard Mater. 2011, 29 (1), 1–9. https://doi.org/10.1016/J.IJRMHM.2010.04.009
Gee, M.; Mingard, K.; Nunn, J.; Roebuck, B.; Gant, A. In Situ Scratch Testing and Abrasion Simulation of WC/Co. Int. J. Refract. Metals Hard Mater. 2017, 62, 192–201. https://doi.org/10.1016/J.IJRMHM.2016.06.004
German, R. M. A-Z of Powder Metallurgy; Elsevier, 2005.
Góez, A.; Coureaux, D.; Ingebrand, A.; Reig, B.; Tarrés, E.; Mestra, A.; Mateo, A.; Jiménez-Piqué, E.; Llanes, L. Contact damage and residual strength in hardmetals, Int. J. Refract. Metals Hard Mater. 2012, 30, 121–127. https://doi.org/10.1016/j.ijrmhm.2011.07.013
Grilli, M. L.; Bellezze, T.; Gamsjäger, E.; Rinaldi, A.; Novak, P.; Balos, S.; Piticescu, R. R.; Ruello, M. L. Solutions for Critical Raw Materials under Extreme Conditions: A Review. Materials. 2017, 10, 285. https://doi.org/10.3390/ma10030285
Grohol, M; Veeh, C. Study on the Critical Raw Materials for the EU 2023; European Comission, 2023. https://op.europa.eu/en/publication-detail/-/publication/57318397-fdd4-11ed-a05c-01aa75ed71a1 (accessed 2024-01-01).
Guan, Z.; Li, N.; Zhang, W.; Wang, J.; Wang, C.; Shen, Q.; Xu, Z.; Peng, J.; Du, Y. A Multiple Loops Machine Learning Framework to Predict the Properties of WC–Co Based Cemented Carbides. Int. J. Refract. Metals Hard Mater. 2022, 104, 105798. https://doi.org/10.1016/j.ijrmhm.2022.105798
Guillon, O.; Gonzalez-Julian, J.; Dargatz, B.; Kessel, T.; Schierning, G.; Räthel, J.; Herrmann, M. Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments. Adv. Eng. Mater. 2014, 16 (7), 830–849. https://doi.org/10.1002/adem.201300409
Guillon, O.; Rheinheimer, W.; Bram, M. A Perspective on Emerging and Future Sintering Technologies of Ceramic Materials. Adv. Eng. Mater. 2023, 25, 2201870. https://doi.org/10.1002/adem.202201870
Guo, B.; Zhang, L.; Cao, L.; Zhang, T.; Jiang, F.; Yan, L. The Correction of Temperature-Dependent Vickers Hardness of Cemented Carbide Base on the Developed High-Temperature Hardness Tester. J. Mater. Process Technol. 2018, 255, 426–433. https://doi.org/10.1016/J.JMATPROTEC.2017.12.041
Gupta, A. K.; Taulik, M. Effect of Process Variables on Performances Measured in Filament and Pellet Based Extrusion Processes. Materials Today. 2021, 47 (15) 5177–5184. https://doi.org/10.1016/j.matpr.2021.05.508
Gurland, J. New scientific approaches to development of tool materials. Int. Mater. Rev. 1988, 33 (1), 151–166. https://doi.org/10.1179/imr.1988.33.1.151
Heng, S. Y.; Raza, M. R.; Muhamad, N.; Sulong, A. B.; Fayyaz, A. Micro-Powder Injection Molding (ΜPIM) of Tungsten Carbide. Int. J. Refract. Metals Hard Mater. 2014, 45, 189–195. https://doi.org/10.1016/j.ijrmhm.2014.04.012
Hering, B.; Gestrich, T.; Steinborn, C.; Vornberger, A.; Pötschke, J. Influence of Alternative Hard and Binder Phase Compositions in Hardmetals on Thermophysical and Mechanical Properties. Metals. 2023, 13, 1803. https://doi.org/10.3390/met13111803
Hu, D.; Liu, Y.; Chen, H.; Wang, M. Microstructure and Wear Resistance of Ni-Based Tungsten Carbide Coating by Laser Cladding on Tunnel Boring Machine Cutter Ring. Surf. Coat. Technol. 2020, 404, 126432. https://doi.org/10.1016/j.surfcoat.2020.126432
Hyperion Materials & Technologies. All about cemented carbide. http://www.allaboutcementedcarbide.com/ (accessed 2019-08-22).
Javaid, M.; Haleem, A.; Singh, R.; Suman, R.; Rab, S. Role of additive manufacturing applications towards environmental sustainability. Adv. Ind. Eng. Polym. Res. 2021, 4 (4), 312. https://doi.org/10.1016/j.aiepr.2021.07.005
Jiménez-Piqué, E.; Turon-Vinas, M.; Chen, H.; Trifonov, T.; Fair, J.; Tarrés, E.; Llanes, L. Focused ion beam tomography of WC-Co cemented carbides, Int. J. Refract. Metals Hard Mater. 2017, 67, 9–17. https://doi.org/10.1016/j.ijrmhm.2017.04.007
Kim, H.; Kim, J. I.; Ryu, S. S.; Jeong, H. Cast WC-Co Alloy-Based Tool Manufacturing Using a Polymeric Mold Prepared via Digital Light Processing 3D Printing. Mater. Lett. 2022, 306. https://doi.org/10.1016/j.matlet.2021.130979
Klünsner, T.; Wurster, S.; Supancic, P.; Ebner, R.; Jenko, M.; Glätzle, J.; Püschel, A.; Pippan, R. Effect of specimen size on the tensile strength of WC–Co hard metal. Acta Mater. 2011, 59, 4244–4252. https://doi.org/10.1016/j.actamat.2011.03.049
Konyashin, I.; Lachmann, F.; Ries, B.; Mazilkin, A.; Straumal, B.; Kübel, C.; Llanes, L.; Baretzky, B. Strengthening Zones in the Co Matrix of WC–Co Cemented Carbides. Scr Mater 2014, 83, 17–20. https://doi.org/10.1016/J.SCRIPTAMAT.2014.03.026
Konyashin, I.; Ries, B.; Hlawatschek, D.; Zhuk, Y.; Mazilkin, A.; Straumal, B.; Dorn, F.; Park, D. Wear-Resistance and Hardness: Are They Directly Related for Nanostructured Hard Materials? Int. J. Refract. Metals Hard Mater. 2015, 49 (1), 203–211. https://doi.org/10.1016/J.IJRMHM.2014.06.017
Konyashin, I. Approaching the 100th Anniversary of the Hardmetal Invention: From First WC-Co Samples towards Modern Advanced Hardmetal Grades. Int. J. Refract. Metals Hard Mater. 2023, 111, 106113. https://doi.org/10.1016/J.IJRMHM.2023.106113
Lavigne, O.; Cinca, N.; Ther, O.; Tarrés, E. Effect of Binder Nature and Content on the Cavitation Erosion Resistance of Cemented Carbides. Int. J. Refract. Metals Hard Mater. 2022, 109, 105978. https://doi.org/10.1016/j.ijrmhm.2022.105978
Lay, S.; Missiaen, J. M. Microstructure and Morphology of Hardmetals. In Comprehensive Hard Materials; Sarin, V. K., Mari, D., Llanes, L., Nebel, C. E., Eds.; Elsevier, 2014; pp 91–117.
Lebedev, A.; Alves, N.; Balbino, N.; Otoni Corrêa, E.; Roque Huanca, D.; Amaury De Freitas Matos, F.; De Carvalho Valeriano, L. Comparative Study of Corrosion Behaviors of WC-NiMo and WC-Co Cemented Carbides. Materials. 2023, 16 (12), 4480. https://doi.org/10.3390/MA16124480
Lengauer, W.; Kukla, C.; Kitzmantel, M.; Duretek, I.; Schwarz, V.; Neubauer, E.; Lieberwirth, C.; Morrison, V. Preparation and properties of extrusion-based 3D-printed hardmetal and cermet parts. In: Proceedings of the Euro PM2018 Congress & Exhibition Euro PM2018 Proceedings, Bilbao Exhibition Centre (BEC), Bilbao, Spain. 2018. p. 14-18.
Long, J.; Zhang, W.; Wang, Y.; Du, Y.; Zhang, Z.; Lu, B.; Cheng, K.; Peng, Y. A New Type of WC–Co–Ni–Al Cemented Carbide: Grain Size and Morphology of Γ′-Strengthened Composite Binder Phase. Scr. Mater. 2017, 126, 33–36. https://doi.org/10.1016/j.scriptamat.2016.08.007
Luo, W.; Liu, Y.; Liu, X.; Zhou, Z. Oxidation behavior of ultrafine WC-based cemented carbides with AlxCoCrCuFeNi high-entropy alloy binders. Ceram. Intern. 2021, 47, 8498–8509. https://doi.org/10.3390/met13010171
Mahani, F.; Liu, C.; Sousa Machado, P. V.; Lin, L. L.; Wen, X.; Jiménez-Piqué, E.; Llanes, L.; Contact damage induced by means of conical indentation in hardmetals: Microstructural effects on residual strength. Int. J. Refract. Metals Hard Mater. 2024, 118, 106446, https://doi.org/10.1016/j.ijrmhm.2023.106446
Maier, K.; Klünsner, T.; Krobath, M.; Pichler, P.; Marsoner, S.; Ecker, W.; Czettl, C.; Schäfer, J.; Ebner, R. Creep Behaviour of WC-12 Wt% Co Hardmetals with Different WC Grain Sizes Tested in Uniaxial Tensile and Compression Step-Loading Tests at 700 °C and 800 °C. Int. J. Refract. Metals Hard Mater. 2021, 100, 105633. https://doi.org/10.1016/J.IJRMHM.2021.105633
Mingard, K. P.; Roebuck, B.; Marshall, J.; Sweetman, G. Some Aspects of the Structure of Cobalt and Nickel Binder Phases in Hardmetals. Acta Mater. 2011, 59 (6), 2277–2290. https://doi.org/10.1016/J.ACTAMAT.2010.12.004
Miyanaji, H.; Orth, M.; Akbar, J. M.; Yang, L. Process Development for Green Part Printing Using Binder Jetting Additive Manufacturing. Front. Mech. Eng. 2018, 13, 504–512. https://doi.org/10.1007/s11465-018-0508-8
Mostafaei, A.; Neelapu, S. H. V. R.; Kisailus, C.; Nath, L. M.; Jacobs, T. D. B.; Chmielus, M. Characterizing surface finish and fatigue behavior in binder-jet 3D-printed nickel-based superalloy 625. Additive Manufacturing. 2018, 24, 200–209. https://doi.org/10.1016/j.addma.2018.09.012
Mueller-Grunz, A.; Alveen, P.; Rassbach, S.; Useldinger, R.; Moseley, S. The Manufacture and Characterization of WC-(Al)CoCrCuFeNi Cemented Carbides with Nominally High Entropy Alloy Binders. Int. J. Refract. Metals Hard Mater. 2019, 84, 105032. https://doi.org/10.1016/j.ijrmhm.2019.105032
Naughton-Duszová, A.; Csanádi, T.; Sedlák, R.; Hvizdoš, P.; Dusza, J. Small-Scale Mechanical Testing of Cemented Carbides from the Micro-to the Nano-Level: A Review. Metals. 2019, 9 (5), 502. https://doi.org/10.3390/met9050502
Naughton-Duszová, A.; Halgaš, R.; Bľanda, M.; Hvizdoš, P.; Lofaj, F.; Dusza, J.; Morgiel, J. Nanoindentation of WC–Co Hardmetals. J. Eur. Ceram. Soc. 2013, 33 (12), 2227–2232. https://doi.org/10.1016/J.JEURCERAMSOC.2012.12.018
Nicolás-Morillas, M.; Besharatloo, H.; Alvaredo, P.; Roa, J. J.; Llanes, L.; Gordo, E. Design of alternative binders for hard materials. Int. J. Refract. Metals Hard Mater. 2020, 87, 105089. https://doi.org/10.1016/j.ijrmhm.2019.105089
Nicolás-Morillas, M.; Llanes, L.; Gordo, E. High-temperature wettability in hard materials: Comparison of systems with different binder/carbide phases and evaluation of C addition. Int. J. Refract. Metals Hard Mater. 2023, 111, 106081. https://doi.org/10.1016/j.ijrmhm.2022.106081
Nicolás-Morillas, M.; Besharatloo, H.; Cabezas, L.; la Mata, M.; Sales, D. L.; Pereira, L.; Müller-Grunz, A.; Bertalan, C.; Useldinger, R.; Llanes, L.; Gordo, E.; Processing of WC with Fe-based alternative binders: Adjustment of C content and effect of Cr addition. Int. J. Refract. Metals Hard Mater. 2024, 118, 106444. https://doi.org/10.1016/j.ijrmhm.2023.106444
Olsson, M.; Cinca, N. Mechanisms controlling friction and material transfer in sliding contacts between cemented carbide and aluminum during metal forming. Int. J. Refract. Metals Hard Mater. 2024, 1184, 106481. https://doi.org/10.1016/j.ijrmhm.2023.106481
Ortiz-Membrado, L.; Cuadrado, N.; Casellas, D.; Roa, J. J.; Llanes, L.; Jiménez-Piqué, E. Measuring the Fracture Toughness of Single WC Grains of Cemented Carbides by Means of Microcantilever Bending and Micropillar Splitting. Int. J. Refract. Metals Hard Mater. 2021, 98, 105529. https://doi.org/10.1016/j.ijrmhm.2021.105529
Ortner, H. M.; Ettmayer, P.; Kolaska, H. The History of the Technological Progress of Hardmetals. Int. J. Refract. Metals Hard Mater. 2014, 44, 148–159. https://doi.org/10.1016/j.ijrmhm.2013.07.014
Padmakumar, M. Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting (SLM), Selective Laser Sintering (SLS) and Binder Jet 3D Printing (BJ3DP) Techniques. Lasers in Manufacturing and Materials Processing. 2020, 7, 338–371. https://doi.org/10.1007/s40516-020-00124-0
Perez Delgado, Y.; Bonny, K.; Baets, P.; Neis, P. D.; Rodriguez Fereira, V.; Malek, O.; Vleugels, J.; Lauwers, B. Dry sliding friction and wear response of WC-Co hardmetal pairs in linearly reciprocating and rotating contact. Sustainable Construction and Design. 2011, 12–18.
Pötschke, J.; Berger, C.; Richter, H. J.; Scheithauer, U.; Weingarten, S. Additive manufacturing of hardmetals. In Proceedings of European Powder Metallurgy, 2017. https://publica-rest.fraunhofer.de/server/api/core/bitstreams/a474fa1b-4efe-4390-8560-5fd14b276368/content (accessed 2024-01-01).
Prakash, L. Developments in Tungsten Carbide-Cobalt Cemented Carbides; Inovar communications, 2008.
Prakash, L. Fundamentals and General Applications of Hardmetals. In Comprehensive Hard Materials Vol. 1-3; Sarin, V.; Mari, D.; Llanes, L.; Nebel, C. E., Eds.; Elsevier, 2014; pp 29–90.
Raihanuzzaman, R. M.; Xie, Z.; Hong, S. J.; Ghomashchi, R. Powder Refinement, Consolidation and Mechanical Properties of Cemented Carbides - An Overview. Powder Technol. 2014, 261, 1–13. https://doi.org/10.1016/j.powtec.2014.04.024
Roa, J. J.; Jimenez-Pique, E.; Verge, C.; Tarragó, J. M.; Mateo, A.; Fair, J.; Llanes, L. Intrinsic Hardness of Constitutive Phases in WC-Co Composites: Nanoindentation Testing, Statistical Analysis, WC Crystal Orientation Effects and Flow Stress for the Constrained Metallic Binder. J. Eur. Ceram. Soc. 2015, 35 (13), 3419–3425. https://doi.org/10.1016/j.jeurceramsoc.2015.04.021
Roa, J. J.; Jiménez-Piqué, E.; Tarragó, J. M.; Sandoval Ravotti, D. A.; Mateo, A.; Fair, J.; Llanes, L. Hall-Petch Strengthening of the Constrained Metallic Binder in WC–Co Cemented Carbides: Experimental Assessment by Means of Massive Nanoindentation and Statistical Analysis. Materials Science and Engineering: A. 2016, 676, 487–491. https://doi.org/10.1016/J.MSEA.2016.09.020
Roebuck, B.; Almond, E. A. Deformation and Fracture Processes and the Physical Metallurgy of WC–Co Hardmetals. International Materials Reviews. 1988, 33 (2), 90–110. https://doi.org/10.1179/095066088790324094
Roebuck, B.; Klose, P.; Mingard, K. P. Hardness of Hexagonal Tungsten Carbide Crystals as a Function of Orientation. Acta Mater. 2012, 60 (17), 6131–6143. https://doi.org/10.1016/J.ACTAMAT.2012.07.056
Roulon, Z.; Missiaen, J. M.; Lay, S. Carbide Grain Growth in Cemented Carbides Sintered with Alternative Binders. Int. J. Refract. Metals Hard Mater. 2020, 86, 105088. https://doi.org/10.1016/j.ijrmhm.2019.105088
Sandoval Ravotti, D. A.; Rinaldi, A.; Tarragó, J. M.; Roa, J. J.; Fair, J.; Llanes, L. Scale Effect in Mechanical Characterization of WC-Co Composites. Int. J. Refract. Metals Hard Mater. 2018, 72, 157–162. https://doi.org/10.1016/J.IJRMHM.2017.12.029
Sandoval Ravotti, D. A. Small-Scale Testing of Micromechanical Response of Cemented Carbides. Thesis (Doctorate), Universitat Politècnica de Catalunya, Barcelona, 2019.
Sandoval Ravotti, D. A.; Roa, J. J.; Ther, O.; Tarrés, E.; Llanes, L. Micromechanical Properties of WC-(W,Ti,Ta,Nb)C-Co Composites. J. Alloys. Compd. 2019, 777, 593–601. https://doi.org/10.1016/J.JALLCOM.2018.11.001
Sandvik. Understanding cemented carbide. https://pt.scribd.com/document/375993631/SANDVIK-Understanding-cemented-carbide-pdf (accessed 2024-01-01).
Scheithauer, U.; Pötschke, J.; Weingarten, S.; Schwarzer, E.; Vornberger, A.; Moritz, T.; Michaelis, A. Droplet-Based Additive Manufacturing of Hard Metal Components by Thermoplastics 3D Printing. J. Ceram. Sci. Tech. 2017, 8 (1), 155–160. https://doi.org/10.4416/JCST2016-00104
Shatov, A. V.; Ponomarev, S. S.; Firstov, S. A. Hardness and Deformation of Hardmetals at Room Temperature. In Comprehensive Hard Materials Vol. 1-3; Sarin, V.; Mari, D.; Llanes, L.; Nebel, C. E., Eds.; Elsevier, 2014a; pp 267–299. https://doi.org/10.1016/B978-0-08-096527-7.00009-X
Shatov, A. V.; Ponomarev, S. S.; Firstov, S. A. Fracture and strength of hardmetals at room temperature. In Comprehensive Hard Materials Vol. 1-3; Sarin, V.; Mari, D.; Llanes, L.; Nebel, C. E., Eds.; Elsevier, 2014b; pp 301–343. https://doi.org/10.1016/B978-0-08-096527-7.00010-6
Sheikh, S.; M'Saoubi, R.; Flasar, P.; Schwind, M.; Persson, T.; Yang, J.; Llanes, L. Fracture toughness of cemented carbides: Testing method and microstructural effects. Int. J. Refract. Metals Hard Mater. 2015, 49, 153–160. https://doi.org/10.1016/j.ijrmhm.2014.08.018
Sribalaji, M.; Mukherjee, B.; Islam, A.; Kumar Keshri, A. Microstructural and Mechanical Behavior of Spark Plasma Sintered Titanium Carbide with Hybrid Reinforcement of Tungsten Carbide and Carbon Nanotubes. Materials Science and Engineering: A. 2017, 702, 10–21. https://doi.org/10.1016/j.msea.2017.06.108
Steinlechner, R.; Oro Calderon, R.; Koch, T.; Linhardt, P.; Schubert, W. D. A Study on WC-Ni Cemented Carbides: Constitution, Alloy Compositions and Properties, Including Corrosion Behaviour. Int. J. Refract. Metals Hard Mater. 2022, 103, 105750. https://doi.org/10.1016/j.ijrmhm.2021.105750
Straumal, B.; Konyashin, I. WC-Based Cemented Carbides with High Entropy Alloyed Binders: A Review. Metals 2023, 13, 171. https://doi.org/10.3390/met13010171
Suzuki, A.; Inui, H.; Pollock, T. M. L12-Strengthened Cobalt-Base Superalloys. Annu. Rev. Mater. Res. 2015, 45, 345–368. https://doi.org/10.1146/ANNUREV-MATSCI-070214-021043
Tang, W.; Zhang, L.; Zhu, J. fei; Chen, Y.; Tian, W.; Liu, T. Effect of Direct Current Patterns on Densification and Mechanical Properties of Binderless Tungsten Carbides Fabricated by the Spark Plasma Sintering System. Int. J. Refract. Metals Hard Mater. 2017, 64, 90–97. https://doi.org/10.1016/j.ijrmhm.2017.01.010
Tang, T.; Xiao, X.; Xu, K.; Lou, M.; Hu, X.; Li, S.; Zhang, W.; Fan, Z.; Chang, K. Corrosion-Resistant WC-Co Based Cemented Carbides: Computational Design and Experimental Verification. Int. J. Refract. Metals Hard Mater. 2023, 110, 106044. https://doi.org/10.1016/J.IJRMHM.2022.106044
Tarragó, J. M.; Jiménez-Piqué, E.; Schneider, L.; Casellas, D.; Torres, Y.; Llanes, L. FIB/FESEM Experimental and Analytical Assessment of R-Curve Behavior of WC-Co Cemented Carbides. Materials Science and Engineering: A. 2015, 645, 142–149. https://doi.org/10.1016/j.msea.2015.07.090
Trueba, M.; Aramburu, A.; Rodríguez, N.; Iparraguirre, I.; Elizalde, M. R.; Ocaña, I.; Sánchez, J. M.; Martínez-Esnaola, J. M. “In-Situ” Mechanical Characterisation of WC–Co Hardmetals Using Microbeam Testing. Int. J. Refract. Metals Hard Mater. 2014, 43, 236–240. https://doi.org/10.1016/J.IJRMHM.2013.12.005
Upadhyaya, G. S. Nature and Properties of Refractory Carbides; Nova Science Publishers, 1996.
Upadhyaya, G. S. Cemented Tungsten Carbides: Production, Properties and Testing; Noyes Publications, 1998.
Upadhyaya, G. S. Materials Science of Cemented Carbides—an Overview. Mater. Des. 2001, 22 (6), 483–489.
Wachowicz, J.; Kruzel, R.; Bałaga, Z.; Ostrowska, A.; Dembiczak, T. Application of U-FAST Technology in Sintering of Submicron WC-Co Carbides. Materials. 2023, 16 (6), 2450.
Walbrühl, M.; Linder, D.; Ågren, J.; Borgenstam, A. Alternative Ni-Based Cemented Carbide Binder – Hardness Characterization by Nano-Indentation and Focused Ion Beam. Int. J. Refract. Metals Hard Mater. 2018, 73, 204–209. https://doi.org/10.1016/j.ijrmhm.2018.02.017
Wang, J.; Zuo, D.; Zhu, L.; Li, W.; Tu, Z.; Dai, S. Effects and Influence of Y2O3 Addition on the Microstructure and Mechanical Properties of Binderless Tungsten Carbide Fabricated by Spark Plasma Sintering. Int. J. Refract. Metals Hard Mater. 2018, 71, 167–174. https://doi.org/10.1016/j.ijrmhm.2017.11.016
Warren, R. Solid-Liquid Interfacial Energies in Binary and Pseudo-Binary Systems. J. Mater. Sci. 1980, 15 (10), 2489–2496. https://doi.org/10.1007/BF00550752/METRICS
Wolfe, T. A.; Shah, R. M.; Prough, K. C.; Trasorras, J. L. Binder Jetting 3D Printed Cemented Carbide: Mechanical and Wear Properties of Medium and Coarse Grades. Int. J. Refract. Metals Hard Mater. 2023a, 113. https://doi.org/10.1016/j.ijrmhm.2023.106197
Wolfe, T.; Shah, R.; Prough, K.; Trasorras, J. L. Coarse Cemented Carbide Produced via Binder Jetting 3D Printing. Int. J. Refract. Metals Hard Mater. 2023b, 110, 106016. https://doi.org/10.1016/j.ijrmhm.2022.106016
Xu, Z. H.; Ågren, J. A Modified Hardness Model for WC–Co Cemented Carbides. Materials Science and Engineering: A. 2004, 386(1–2), 262–268. https://doi.org/10.1016/J.MSEA.2004.07.061
Xu, H.; Huang, H. Microstructure Evolution and Mechanical Properties of Thermally Sprayed Coating Modified by Laser Remelting and Injection with Tungsten Carbide. Ceram. Int. 2022a, 48 (16), 22854–22868. https://doi.org/10.1016/j.ceramint.2022.04.189
Xu, H.; Huang, H. Plasma Remelting and Injection Method for Fabricating Metal Matrix Composite Coatings Reinforced with Tungsten Carbide. Ceram. Int. 2022b, 48 (2), 2645–2659. https://doi.org/10.1016/j.ceramint.2021.10.048
Yang, Y.; Zhang, C.; Wang, D.; Nie, L.; Wellmann, D.; Tian, Y. Additive Manufacturing of WC-Co Hardmetals: A Review. Int. J. Adv. Manuf. Tech. 2020, 108 (5–6), 1653–1673. https://doi.org/10.1007/s00170-020-05389-5
Zak Fang, Z.; Koopman. M. C. Cemented Tungsten Carbide Hardmetal-An Introduction. In Comprehensive Hard Materials; Sarin, V. K., Mari, D., Llanes, L., Nebel, C. E., Eds.; Elsevier, 2014; pp 123-137. https://doi.org/10.1016/B978-0-08-096527-7.00004-0
Zhao, Z.; Liu, F.; Zhao, M.; Zhong, L.; Xu, Y.; Li, J. A New Strategy to Efficiently Fabricate Tungsten Carbide Coating on Tungsten: Two-Step Interstitial Carburization. Surf. Coat. Technol. 2020, 389, 125579. https://doi.org/10.1016/j.surfcoat.2020.125579
Zheng, Y. F.; Fargas, G.; Besharatloo, H.; Serra, M.; Roa, J. J.; Armelin, E.; Lavigne, O.; Llanes, L.; Assessment of corrosion-induced changes on the mechanical integrity of cemented carbides at small length scales. Int. J. Refract. Metals Hard Mater. 2019, 84, 105033, https://doi.org/10.1016/j.ijrmhm.2019.105033
Zheng, Y.F.; Fargas, G.; Lavigne, O.; Serra, M.; Coureaux, D.; Zhang, P.P.; Yao, Z.H.; Zhang, Q.L.; Yao, J.H.; Llanes, L. Contact fatigue of WC-6%wtCo cemented carbides: Influence of corrosion-induced changes on emergence and evolution of damage, Ceram. Int. 2022a, 48, 5766-5774. https://doi.org/10.1016/j.ceramint.2021.11.124
Zheng, Y.; Fargas, G.; Armelin, E.; Lavigne, O.; Zhang, Q.; Yao, J.; Llanes, L. Influence of Corrosion-Induced Damage on Mechanical Integrity and Load-Bearing Capability of Cemented Carbides. Metals. 2022b, 12, 2104. https://doi.org/10.3390/met12122104
Zhou, P. F.; Xiao, D. H.; Yuan, T. C. Comparison between Ultrafine-Grained WC–Co and WC–HEA-Cemented Carbides. Powder Metallurgy. 2016, 60 (1), 1–6. https://doi.org/10.1080/00325899.2016.1260903
Zhou, P. L.; Xiao, D. H.; Zhou, P. F.; Yuan, T. C. Microstructure and Properties of Ultrafine Grained AlCrFeCoNi/WC Cemented Carbides. Ceram. Int. 2018, 44 (14), 17160–17166. https://doi.org/10.1016/J.CERAMINT.2018.06.171