Study of the impact of irradiation and temperature on physical and chemical characteristics of paracetamol
Main Article Content
Abstract
Pure paracetamol samples were subjected to temperature (40 °C) and light (sunlight, UV-lamp, and γ-ray) for time intervals. Treatment impact on the extent of chemical and physical impairments in the treated samples was pursued by comparing the results obtained from thermogravimetric analysis and differential scanning calorimeter (TGA/DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), high-performance liquid chromatography (HPLC), and photocatalytic decomposition process. Thermal analysis behavior, lifetime prediction, thermal stability, kinetics (i.e., Ea, Z, n), and thermodynamic (∆G*, ∆H*, and ∆S*) parameters were investigated for samples before and after exposure to heat and light from curves of the non-isothermal gravimetric analysis (TGA) at a heating rate of 10 °C min–1 and with an association of Coats-Redfern and the other standard equations. Changes in crystallinity percentage were calculated relative to the untreated sample using measurements of DSC and XRD. In some treated samples, changes in morphology and purity were observed in SEM images and HPLC results. Kinetic parameters were determined, and the photocatalytic degradation percentage was discussed.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Aguilar, C. A.; Montalvo, C.; Ceron, J. G.; Moctezuma, E. Photocatalytic degradation of Acetaminophen. Int. J. Environ. Health Res. 2011, 5 (4), 1071–1078. https://doi.org/10.22059/IJER.2011.465
Akyar, I. Wide spectra of Quality Control. În: Tella, A. C.; Salawu, M. O.; Philips, I. M.; Olabemiwo O. M.; and Adediran, G. O. Quality assessment of solid pharmaceuticals and intravenous fluid manufacturing in Sub-Saharan Africa. Intech Open (CCBY 3.0 license. Nigeria) 2011.
Al-Maydama, H. M.; Abduljabbar, A. A.; Al-Maqtari, M. A.; Naji, K. M. Study of temperature and irradiation influence on the physicochemical properties of Aspirin. J. Mol. Struct. 2018, 1157, 364–373. https://doi.org/10.1016/j.molstruc.2017.12.062
Al-Maydama, H. M.; El-Shekeil, A. G.; Al-Karbouly, A.; Al-Ikrimawy, W. Thermal degradation behavior of some Poly[4-amino-2,6-pyrimidnodithiocarbamate] metal complexes. Arab. J. Sci. Eng. 2009, 34 (1), 67–75.
Al-Maydama, H. M. A. Comments on “The effect of UV radiation on the thermal parameters of collagen degradation”. Polym. Degrad. Stab. 2004, 84, 363–365. https://doi.org/10.1016/j.polymdegradstab.2003.06.002
Boverhof, D. R.; Bramante, C. M.; Butala, J. H.; Clancy, S. F.; Lafranconi, M.; West, J.; Gordon, S. C. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 2015, 73, 137–150. https://doi.org/10.1016/j.yrtph.2015.06.001
British Pharmacopeia, Vol. I & II. Her Majesty's stationary office, London, UK, 2009.
Carstensen, J. T. Stability of solids and solid dosage forms. J. Pharm. Sci. 1974, 63 (1), 1–14. https://doi.org/10.1002/jps.2600630103
Coats, A. W.; Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature. 1964, 201 (4914), 68–69. https://doi.org/10.1515/zna-1979-0523
Donia, A. M.; Gouda, M. M.; Ayad, M. I.; El-Boraey, H. A. Thermal behavior of some aromatic diamine complexes. Thermochim. Acta. 1992, 194, 155–163. https://doi.org/10.1016/0040-6031(92)80014-N
Druzhbin, D.; Drebushchak, T.; Min Kov, V.; Boldyneva, E. Crystal structure of two Paracetamol polymorphs at 20 K: A search for the 'structure-property' relationship. J. Struct. Chem. 2015, 52, 317–323. https://doi.org/10.1134/S002247661502016X
Fubara, O. J. and Notari, R. Influence of pH, temperature, and buffers on Cefepime degradation kinetics and stability predictions in aqueous solutions. J. Pharm. Sci. 1998, 87 (12), 1572–1576. https://doi.org/10.1021/js980170y
Huynh-Ba, K. An Overview of Physical Stability of Pharmaceuticals. In: Pharmaceutical Stability Testing to Support Global Markets. 2010, p. 145–152. https://doi.org/10.1007/978-1-4419-0889-6_19
Jendrzejewska, I.; Goryczka, T.; Pietrasik, E.; Klimontko, J.; Jampilek, J. X-ray and Thermal Analysis of Selected Drugs Containing Acetaminophen. Molecules. 2020, 25 (24), 5909. https://doi.org/10.3390/molecules25245909
Lusina, M.; Cindrić, J.; Peko, M.; Pozaić, L.; Musulin, N. Stability study of losartan/hydrochlorothiazide tablets. Int. J. Pharm. 2005, 291, 127–137. https://doi.org/10.1016/j.ijpharm.2004.07.050
Méndez-Arriaga, F.; Esplugas, S.; Giménez, J. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Research. 2008, 42, 585–594. https://doi.org/10.1016/j.watres.2007.08.002
Moctezuma, E.; Leyva, E.; Aguilar, C. A.; Luna, R. A.; Montalvo, C. Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. J. Hazard. Mater. 2012, 243, 130–138. https://doi.org/10.1016/j.jhazmat.2012.10.010
Oliveira, G. G. G.; Feitosa, A.; Loureiro, K.; Fernandes, A. R.; Souto, E. B.; Severino, P. Compatibility study of paracetamol, chlorpheniramine maleate and phenylephrine hydrochloride in physical mixtures. Saudi Pharmaceutical Journal. 2017, 25 (1), 99-103. https://doi.org/10.1016/j.jsps.2016.05.001
Prime, R. B.; Bair, H. E.; Vyazovkin, S.; Gallagher, P. K.; Riga, A. Thermogravimetric analysis (TGA). In: thermal analysis of polymers: Fundamentals and Applications, eds. J. D. Menczel and R. B. Prime. Hoboken: Willey, 2009. https://doi.org/10.1002/9780470423837.ch3
Şayan, E. Optimization, and modeling of decolorization and COD reduction of reactive dye solutions by ultrasound-assisted adsorption. Chem. Eng. J. 2006, 119, 175–181. https://doi.org/10.1016/j.cej.2006.03.025
Schnitzler, E.; Lençone, K.; Kobelnik, M. Characterization of pharmaceuticals by thermal analysis. Ciências Exatas e da Terra, C. Agrárias e Engenharias. 2002, 8 (1), 91–100.
Suno, M.; Ichihara, H.; Ishino, T.; Yamamoto, K.; Yoshizaki, Y. Photostability studies on (±)-tramadol in a liquid formulation. J. Pharm. Health Care Sci. 2015, 1 (5), 1–6. https://doi.org/10.1186/s40780-014-0003-2
Tomassetti, M.; Catalanib, A.; Rossib, V.; Vecchio, S. Thermal analysis study of the interactions between acetaminophen and excipients in solid dosage forms and in some binary mixtures. J. Pharm. Biomed. Anal. 2005, 37, 949–955. https://doi.org/10.1016/j.jpba.2004.10.008
Trujillano, R.; Rives, V.; García, I. Photocatalytic Degradation of Paracetamol in Aqueous Medium Using TiO2 Prepared by the Sol-Gel Method. Molecules. 2022, 27 (9), 2904. https://doi.org/10.3390/molecules27092904
Varshny, L. and Patel, K. M. Effects of ionizing radiation on the pharmaceutical compound, Chloramphenicol. Radiat. Phys. Chem. 1994, 43 (5), 471–480. https://doi.org/10.1016/0969-806X(94)90064-7
Vermeire, A.; Remon, J. P. Stability and compatibility of morphine: Review. Int. J. Pharm. 1999, 187, 17–51. https://doi.org/10.1016/S0378-5173(99)00181-7
Yousaf, M.; Nazir, S.; Hayat, Q.; Akhtar, M. N.; Akbar, M.; Lu, Y.; Noor, A.; Zhang, J.; Shah, M.A.K.; Wang, B. Magneto-optical properties and physical characteristics of M-type hexagonal ferrite (Ba1-xCaxFe11.4Al0.6O19) nanoparticles (NPs). Ceram. Int. 2021, 47 (8), 11668–11676. https://doi.org/10.1016/j.ceramint.2021.01.006