Phytochemical screening, antiproliferative evaluation, and molecular docking studies of Acacia nilotica fruit from Nigeria

Main Article Content

William Ojoniko Anthony
Ejike Onwudiegwu Okpala
Kehinde Gabriel Obiyenwa
Godfrey Okechukwu Eneogwe
Banjo Semire

Abstract

Acacia nilotica, (Fabaceae), is valued for its medicinal properties.  We examine the antiproliferative properties of the aqueous fruit extract of A. nilotica. Aqueous extract from Acacia has been associated with potential anticancer effects in fruits and vegetables through screening, antiproliferative, and molecular docking evaluation. Phytochemical screening reveals the presence of alkaloids, saponins, tannins, flavonoids, steroids, and carbohydrates. The extracts showed significant antiproliferative effects at eight concentrations (8–50 mg mL–1) examined in comparison to the standard (methotrexate). When compared to Sorghum bicolor seed radicles treated with methotrexate at 48, 72, and 96 h, 50 mg mL–1 extract significantly inhibited the generation of seed radicals, with potent inhibitions of 87.06, 83.48, and 81.45%. Analysis of molecular docking results showed that [(2R,3S)-2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-3,4-dihydro-2H-chromen-7-yl]3,4,5-trihydroxybenzoate (D21), (5R,9R,10R,13S,14S,17S)-17-[(2S,4R)-4-[(2S)-3,3-dimethyloxiran-2-yl]-4-hydroxybutan-2-yl]-4,4,10,13,14-pentamethyl-1,2,5,6,9,11,12,15,16,17-decahydrocyclopenta[a]phenanthren-3-one (D28) and [(2R,3S)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-3,4-dihydro-2H-chromen-5-yl] 3,4,5-trihydroxybenzoate (D29) have strong tendency to inhibit dihydrofolate reductase (1VDR), capase-9 (6J15) and Mycobacterium tuberculosis (Mtb) (6J17) better than methotrexate and azacitidine, known antiproliferative drugs. These findings support the use of A. nilotica in traditional medicine for the treatment of tuberculosis and cancer.

Metrics

Metrics Loading ...

Article Details

How to Cite
Anthony, W. O., Okpala, E. O., Obiyenwa, K. G., Eneogwe, G. O., & Semire, B. (2024). Phytochemical screening, antiproliferative evaluation, and molecular docking studies of Acacia nilotica fruit from Nigeria. Eclética Química, 49, e–1512. https://doi.org/10.26850/1678-4618eq.v49.2024.e1512
Section
Original articles

References

Abd-Ulgadir, K.; El-Kamali, H. Antimicrobial activity of Acacia nilotica ssp. nilotica against some causative agents of urogenital infections. Annu Res Rev Biol. 2017, 19 (5), 1–14. https://doi.org/10.9734/ARRB/2017/36026

Adegbola, A. E.; Fadahunsi, O. S.; Alausa, A.; Abijo, A. Z.; Balogun, T. A.; Aderibigbe, T. S.; Semire, B.; Adegbola, P. I. Computational prediction of nimbanal as potential antagonist of respiratory syndrome coronavirus. Informatics in Medicine Unlocked. 2021, 24, 100617. https://doi.org/10.1016/j.imu.2021.100617

Adepoju, A. J.; Latona, D. F.; Olafare, O. G.; Oyebamiji, A. K.; Abdul-Hammed, M.; Semire, B. Molecular docking and pharmacokinetics studies of Curcuma longa (curcumin) potency against Ebola virus. “Ovidius” Univ Ann Chem. 2022, 33 (1), 23–35. https://doi.org/10.2478/auoc-2022-0004

Askari, B. S.; Krajinovic, M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics. 2010, 11, 578–583. https://doi.org/10.2174/138920210793360925

Ayinde, B. A.; Agbakwuru, U. Cytotoxic and growth inhibitory effects of the methanol extract Struchium sparganophora Ktze (Asteraceae) leaves. Pharmacogn Mag. 2010, 6 (24), 293–297. https://doi.org/10.4103/0973-1296.71795

Ayinde, B. A.; Omogbai, E. K.; Ikpefan, E. O. Comparative cytotoxic and antiproliferative effects of Persea americana mill (Lauraceae) leaf, stem, and root barks. Niger J Pharm Sci. 2011, 10, 16–26.

Bello, I. A.; Ndukwe, G. I.; Audu, O.T. Chemical analysis and biological activity of a precipitate from Pavetta crassipes. J Med Plant Res. 2011, 8 (6), 285–287. https://doi.org/10.5897/JMPR10.088

Butler, M. S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat Prod Rep. 2008, 25, 475–516. https://doi.org/10.1039/b514294f

Chinedu, E.; Arome, D.; Ameh, S. F.; Ameh, G. E. Evaluation of the antiproliferative and cytostatic effect of Citrus sinensis (orange) fruit juice. Int J App Basic Med Res. 2014, 4 (Suppl. 1), S20–S22. https://doi.org/10.4103/2229-516X.140711

Cossu, F.; Milani, M.; Mastrangelo, E.; Vachette, P.; Servida, F.; Lecis, D.; Canevari, G.; Delia, D.; Drago, C.; Rizzo, V.; Manzoni, L.; Seneci, P.; Scolastico, C.; Bolognesi, M. Structural basis for bivalent smac-mimetics recognition in the IAP protein family. J Mol Biol. 2009, 392, 630–644. https://doi.org/10.1016/j.jmb.2009.04.033

Eldeen, I. M. S.; Van Heerden, F. R.; Van Staden, J. In vitro biological activities of niloticane, a new bioactive cassane diterpene from the bark of Acacia nilotica subsp. kraussiana. J Ethnopharmacol. 2010, 128 (3), 555–560. https://doi.org/10.1016/j.jep.2010.01.057

Enegide, C.; Arome, D.; Dabum, L. J. Preliminary assessment of the antiproliferative potential of Ananas comosus (pineapple) fruit juice. J HerbMed Pharmacol. 2014, 5 (2), 50–53. https://doi.org/10.1016/S1995-7645(14)60257-1

Gopal, S.; Sharpless, N. E. Cancer as a global health priority. JAMA. 2021, 326 (9), 809–810. https://doi.org/10.1001/jama.2021.12778

Horaira, M. A.; Islam, M. A.; Kibria, M. K.; Alam, M. J.; Kabir, S. R.; Mollah, M. N. H. Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents. BMC Med. Genomics. 2023 16 (1), 64. https://doi.org/10.1186/s12920-023-01488-w

Kirubhanand, C.; Merciline, L. J.; Anitha, S.; Sangeetha, R.; Nachammai, K. T.; Langeswaran, K.; Gowtham, K. S. Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches Front. Mol Biosci. 2023, 10, 1124563. https://doi.org/10.3389/fmolb.2023.1124563

Krishnan, M.; Babu, S.; Thomas, S. A.; Surulivel, J. S.; Ayyanar, K.; Molecular docking analysis of VEGF with compounds from tomato. Bioinformation. 2022, 18 (5), 478–481. https://doi.org/10.6026/97320630018478

Kumari, A.; Karnatak, M.; Singh, D.; Shankar, R.; Jat, J. L.; Sharma, S.; Yadav, D.; Shrivastava, R.; Verma, V. P. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem. 2019, 163, 804–829. https://doi.org/10.1016/j.ejmech.2018.12.007

Kumari, R.; Mishra, R. C.; Sheoran, R.; Yadav, E. J. Fractionation of antimicrobial compounds from Acacia nilotica twig extract against oral pathogens. Biointerface Res Appl Chem. 2020, 10 (6), 7097–7105. https://doi.org/10.33263/BRIAC106.70977105

Kunle, O. F.; Egbarevba, H. O. Preliminary studies on Vernonia ambigua. Phytochemical and antimicrobial screening of the whole plant. Ethnobot Leaflets. 2009, 13, 216–221.

Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev. 2009, 35, 57–68. https://doi.org/10.1016/j.ctrv.2008.09.005

Mi, J.; Gong, W.; Wu, X. Advances in key drug target identification and new drug development for tuberculosis. BioMed Res Int. 2022, 2022, 5099312. https://doi.org/10.1155/2022/5099312

Mohmmed, R. A.; Babiker, E. E. Bioactive compounds, antioxidant activity, minerals composition and antimicrobial activity of Acacia nilotica fruit flesh and seeds. Res J Med Plants. 2019, 13 (1), 18–25. https://doi.org/10.3923/rjmp.2019.18.25

Mukherji, D.; Murillo, R. H.; Van Hemelrijck, M.; Vanderpuye, V.; Shamieh, O.; Torode, J.; Pramesh, C. S.; Yusuf, A.; Booth, C. M.; Aggarwal, A.; Sullivan, R. Global cancer research in the post-pandemic world. Lancet Oncol. 2021, 22 (12), 1652–1654. https://doi.org/10.1016/s1470-2045(21)00602-1

Muschietti, L.; Vila, R.; Cechinel Filho, V.; Setzer, W. Tropical protozoan diseases: Natural product drug discovery and development. Evid Based Complement Altern Med. 2013, 2013, 404250. https://doi.org/10.1155/2013/404250

Ogbadoyi, E. O.; Garba, M. H.; Kabiru, A. Y.; Mann, A.; Okogun, J. I. Therapeuticevaluations of Acacia nilotica (Linn) stem bark extract in experimental Africa trypanosomiasis. Int J Appl Res Nat Prod. 2011, 4 (2), 11–18.

Omotayo, I. A.; John, A. A.; Gbenga, O. O.; Misbaudeen, A.-H., Felix, L. D., Kolawole, O. A.; Banjo, S. In-silico assessment via molecular docking and ADMET profile of Botanical drugs (bergamottin and casticin) against trial drugs for Lassa virus. Int J Pharm Sci Res. 2022, 13 (9), 3494–3518. https://doi.org/10.13040/IJPSR.0975-8232.13(9).3494-18

Oyebamiji, A. K.; Akintelu, S. A.; Akande, I. O.; Aworinde, H. O.; Adepegba, O. A.; Akintayo, E. T.; Akintayo, C. O.; Semire, B.; Babalola, J. O. Dataset on biochemical inhibiting activities of selected phytochemicals in Azadirachta indica L. as potential NS2B–NS3 proteases inhibitors. Data in Brief. 2023, 48, 109162. https://doi.org/10.1016/j.dib.2023.109162

Oyewole, R. O.; Oyebamiji, A. K.; Semire, B. Theoretical calculations of molecular descriptors for anticancer activities of 1,2,3-triazole-pyrimidine derivatives against gastric cancer cell (MGC-803): DFT, QSAR and docking approaches. Heliyon. 2020, 6 (5), e03926. https://doi.org/10.1016/j.heliyon.2020.e03926

Pieper, U.; Kapadia, G.; Mevarech, M.; Herzberg, O. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure. 1998, 6 (1), 75–88. https://doi.org/10.1016/S0969-2126(98)00009-4

Raji, M. A.; Adekeye, J. O.; Kwaga, J. K. P.; Bale, J. O. O. Antimicrobial effects of Acacia nilotica and Vitex doniana on the thermophilic campylobacter species. African J Sci Technol. 2002, 3 (2), 9–13. https://doi.org/10.4314/ajst.v3i2.15262

Roozbeh, N.; Darvish, L. Acacia nilotica: new plant for help in pelvic organ prolapse. J Menopausal Med 2016, 22 (3), 129. https://doi.org/10.6118/jmm.2016.22.3.129

Salvatore, P. P.; Zhang, Y. Tuberculosis molecular basis of pathogenesis. Reference Module in Biomedical Sciences. 2017. https://doi.org/10.1016/B978-0-12-801238-3.95697-6

Sarkiyayi, S.; Abdul Rasheed, K. Properties of Acacia nilotica leaf extract: A preliminary investigation on anti-typhoid. Int J Curr Biochem Res. 2013, 1 (2), 9–14.

Shil, A.; Akter, A.; Sultana, A.; Halder, S.K.; Himel, M.K.; Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds. J. Tropical Med. 2023, https://doi.org/10.1155/2023/6360187

Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone–an antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010, 120, 825–830. https://doi.org/10.1016/j.foodchem.2009.11.022

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021, 71 (3), 209–249. https://doi.org/10.3322/caac.21660

Tanko, Y.; Abdulazeez, A.; Muhammad, A.; Jimoh, A.; Mohammed, K. H.; Mohammed, A. Effect of methanol crude leaves extract and aqueous fraction of Acacia nilotica on lipid profile and liver enzymes on alloxan-induced diabetic wistar rats. J. Exp Biol. 2014, 2 (3), 36–40. https://doi.org/10.1242/jeb.105148

Taylor, L. Plant-based drugs and medicines. Square One Publishers, 2000.

Thiagarajan, K.; Mohan, S.; Roy, T. K. Chandrasekaran R. Antiproliferative effect of Acacia nilotica (L.) leaf extract rich in ethyl gallate against human carcinoma cell line KB. Indian J Pharmacol. 2020, 52 (6), 488–494. https://doi.org/10.4103/ijp.IJP_223_17

Wang, S.; Zhou, K.; Yang, X.; Zhang, B.; Zhao, Z.; Xiao, Y.; Yang, X.; Yang, H.; Guddat, L. W.; Li, J.; Rao, Z. Structural insights into substrate recognition by the type VII secretion system. Protein Cell. 2020, 11 (2), 124–137. https://doi.org/10.1007/s13238-019-00671-z

[WHO] World Health Statistics. World Health Statistics 2018: Monitoring health for the SDGs, sustainable development goals. WHO, 2018. https://apps.who.int/iris/handle/10665/272596 (accessed 2023-10-02).

Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21 (5), 559. https://doi.org/10.3390/molecules21050559

Yusuf, A. Z.; Zakir, A.; Shemau, Z.; Abdullahi, M.; Halima, S. A. Phytochemical analysis of the methanol leaves extract of Paullinia pinnata Linn. J Pharmacognosy Phytother. 2014, 6 (2), 10–16. https://doi.org/10.5897/JPP2013.0299