Phytochemical screening, antiproliferative evaluation, and molecular docking studies of Acacia nilotica fruit from Nigeria
Main Article Content
Abstract
Acacia nilotica, (Fabaceae), is valued for its medicinal properties. We examine the antiproliferative properties of the aqueous fruit extract of A. nilotica. Aqueous extract from Acacia has been associated with potential anticancer effects in fruits and vegetables through screening, antiproliferative, and molecular docking evaluation. Phytochemical screening reveals the presence of alkaloids, saponins, tannins, flavonoids, steroids, and carbohydrates. The extracts showed significant antiproliferative effects at eight concentrations (8–50 mg mL–1) examined in comparison to the standard (methotrexate). When compared to Sorghum bicolor seed radicles treated with methotrexate at 48, 72, and 96 h, 50 mg mL–1 extract significantly inhibited the generation of seed radicals, with potent inhibitions of 87.06, 83.48, and 81.45%. Analysis of molecular docking results showed that [(2R,3S)-2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-3,4-dihydro-2H-chromen-7-yl]3,4,5-trihydroxybenzoate (D21), (5R,9R,10R,13S,14S,17S)-17-[(2S,4R)-4-[(2S)-3,3-dimethyloxiran-2-yl]-4-hydroxybutan-2-yl]-4,4,10,13,14-pentamethyl-1,2,5,6,9,11,12,15,16,17-decahydrocyclopenta[a]phenanthren-3-one (D28) and [(2R,3S)-2-(3,4-dihydroxyphenyl)-3,7-dihydroxy-3,4-dihydro-2H-chromen-5-yl] 3,4,5-trihydroxybenzoate (D29) have strong tendency to inhibit dihydrofolate reductase (1VDR), capase-9 (6J15) and Mycobacterium tuberculosis (Mtb) (6J17) better than methotrexate and azacitidine, known antiproliferative drugs. These findings support the use of A. nilotica in traditional medicine for the treatment of tuberculosis and cancer.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Abd-Ulgadir, K.; El-Kamali, H. Antimicrobial activity of Acacia nilotica ssp. nilotica against some causative agents of urogenital infections. Annu Res Rev Biol. 2017, 19 (5), 1–14. https://doi.org/10.9734/ARRB/2017/36026
Adegbola, A. E.; Fadahunsi, O. S.; Alausa, A.; Abijo, A. Z.; Balogun, T. A.; Aderibigbe, T. S.; Semire, B.; Adegbola, P. I. Computational prediction of nimbanal as potential antagonist of respiratory syndrome coronavirus. Informatics in Medicine Unlocked. 2021, 24, 100617. https://doi.org/10.1016/j.imu.2021.100617
Adepoju, A. J.; Latona, D. F.; Olafare, O. G.; Oyebamiji, A. K.; Abdul-Hammed, M.; Semire, B. Molecular docking and pharmacokinetics studies of Curcuma longa (curcumin) potency against Ebola virus. “Ovidius” Univ Ann Chem. 2022, 33 (1), 23–35. https://doi.org/10.2478/auoc-2022-0004
Askari, B. S.; Krajinovic, M. Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Curr Genomics. 2010, 11, 578–583. https://doi.org/10.2174/138920210793360925
Ayinde, B. A.; Agbakwuru, U. Cytotoxic and growth inhibitory effects of the methanol extract Struchium sparganophora Ktze (Asteraceae) leaves. Pharmacogn Mag. 2010, 6 (24), 293–297. https://doi.org/10.4103/0973-1296.71795
Ayinde, B. A.; Omogbai, E. K.; Ikpefan, E. O. Comparative cytotoxic and antiproliferative effects of Persea americana mill (Lauraceae) leaf, stem, and root barks. Niger J Pharm Sci. 2011, 10, 16–26.
Bello, I. A.; Ndukwe, G. I.; Audu, O.T. Chemical analysis and biological activity of a precipitate from Pavetta crassipes. J Med Plant Res. 2011, 8 (6), 285–287. https://doi.org/10.5897/JMPR10.088
Butler, M. S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat Prod Rep. 2008, 25, 475–516. https://doi.org/10.1039/b514294f
Chinedu, E.; Arome, D.; Ameh, S. F.; Ameh, G. E. Evaluation of the antiproliferative and cytostatic effect of Citrus sinensis (orange) fruit juice. Int J App Basic Med Res. 2014, 4 (Suppl. 1), S20–S22. https://doi.org/10.4103/2229-516X.140711
Cossu, F.; Milani, M.; Mastrangelo, E.; Vachette, P.; Servida, F.; Lecis, D.; Canevari, G.; Delia, D.; Drago, C.; Rizzo, V.; Manzoni, L.; Seneci, P.; Scolastico, C.; Bolognesi, M. Structural basis for bivalent smac-mimetics recognition in the IAP protein family. J Mol Biol. 2009, 392, 630–644. https://doi.org/10.1016/j.jmb.2009.04.033
Eldeen, I. M. S.; Van Heerden, F. R.; Van Staden, J. In vitro biological activities of niloticane, a new bioactive cassane diterpene from the bark of Acacia nilotica subsp. kraussiana. J Ethnopharmacol. 2010, 128 (3), 555–560. https://doi.org/10.1016/j.jep.2010.01.057
Enegide, C.; Arome, D.; Dabum, L. J. Preliminary assessment of the antiproliferative potential of Ananas comosus (pineapple) fruit juice. J HerbMed Pharmacol. 2014, 5 (2), 50–53. https://doi.org/10.1016/S1995-7645(14)60257-1
Gopal, S.; Sharpless, N. E. Cancer as a global health priority. JAMA. 2021, 326 (9), 809–810. https://doi.org/10.1001/jama.2021.12778
Horaira, M. A.; Islam, M. A.; Kibria, M. K.; Alam, M. J.; Kabir, S. R.; Mollah, M. N. H. Bioinformatics screening of colorectal-cancer causing molecular signatures through gene expression profiles to discover therapeutic targets and candidate agents. BMC Med. Genomics. 2023 16 (1), 64. https://doi.org/10.1186/s12920-023-01488-w
Kirubhanand, C.; Merciline, L. J.; Anitha, S.; Sangeetha, R.; Nachammai, K. T.; Langeswaran, K.; Gowtham, K. S. Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches Front. Mol Biosci. 2023, 10, 1124563. https://doi.org/10.3389/fmolb.2023.1124563
Krishnan, M.; Babu, S.; Thomas, S. A.; Surulivel, J. S.; Ayyanar, K.; Molecular docking analysis of VEGF with compounds from tomato. Bioinformation. 2022, 18 (5), 478–481. https://doi.org/10.6026/97320630018478
Kumari, A.; Karnatak, M.; Singh, D.; Shankar, R.; Jat, J. L.; Sharma, S.; Yadav, D.; Shrivastava, R.; Verma, V. P. Current scenario of artemisinin and its analogues for antimalarial activity. Eur J Med Chem. 2019, 163, 804–829. https://doi.org/10.1016/j.ejmech.2018.12.007
Kumari, R.; Mishra, R. C.; Sheoran, R.; Yadav, E. J. Fractionation of antimicrobial compounds from Acacia nilotica twig extract against oral pathogens. Biointerface Res Appl Chem. 2020, 10 (6), 7097–7105. https://doi.org/10.33263/BRIAC106.70977105
Kunle, O. F.; Egbarevba, H. O. Preliminary studies on Vernonia ambigua. Phytochemical and antimicrobial screening of the whole plant. Ethnobot Leaflets. 2009, 13, 216–221.
Li-Weber, M. New therapeutic aspects of flavones: The anticancer properties of Scutellaria and its main active constituents wogonin, baicalein and baicalin. Cancer Treat Rev. 2009, 35, 57–68. https://doi.org/10.1016/j.ctrv.2008.09.005
Mi, J.; Gong, W.; Wu, X. Advances in key drug target identification and new drug development for tuberculosis. BioMed Res Int. 2022, 2022, 5099312. https://doi.org/10.1155/2022/5099312
Mohmmed, R. A.; Babiker, E. E. Bioactive compounds, antioxidant activity, minerals composition and antimicrobial activity of Acacia nilotica fruit flesh and seeds. Res J Med Plants. 2019, 13 (1), 18–25. https://doi.org/10.3923/rjmp.2019.18.25
Mukherji, D.; Murillo, R. H.; Van Hemelrijck, M.; Vanderpuye, V.; Shamieh, O.; Torode, J.; Pramesh, C. S.; Yusuf, A.; Booth, C. M.; Aggarwal, A.; Sullivan, R. Global cancer research in the post-pandemic world. Lancet Oncol. 2021, 22 (12), 1652–1654. https://doi.org/10.1016/s1470-2045(21)00602-1
Muschietti, L.; Vila, R.; Cechinel Filho, V.; Setzer, W. Tropical protozoan diseases: Natural product drug discovery and development. Evid Based Complement Altern Med. 2013, 2013, 404250. https://doi.org/10.1155/2013/404250
Ogbadoyi, E. O.; Garba, M. H.; Kabiru, A. Y.; Mann, A.; Okogun, J. I. Therapeuticevaluations of Acacia nilotica (Linn) stem bark extract in experimental Africa trypanosomiasis. Int J Appl Res Nat Prod. 2011, 4 (2), 11–18.
Omotayo, I. A.; John, A. A.; Gbenga, O. O.; Misbaudeen, A.-H., Felix, L. D., Kolawole, O. A.; Banjo, S. In-silico assessment via molecular docking and ADMET profile of Botanical drugs (bergamottin and casticin) against trial drugs for Lassa virus. Int J Pharm Sci Res. 2022, 13 (9), 3494–3518. https://doi.org/10.13040/IJPSR.0975-8232.13(9).3494-18
Oyebamiji, A. K.; Akintelu, S. A.; Akande, I. O.; Aworinde, H. O.; Adepegba, O. A.; Akintayo, E. T.; Akintayo, C. O.; Semire, B.; Babalola, J. O. Dataset on biochemical inhibiting activities of selected phytochemicals in Azadirachta indica L. as potential NS2B–NS3 proteases inhibitors. Data in Brief. 2023, 48, 109162. https://doi.org/10.1016/j.dib.2023.109162
Oyewole, R. O.; Oyebamiji, A. K.; Semire, B. Theoretical calculations of molecular descriptors for anticancer activities of 1,2,3-triazole-pyrimidine derivatives against gastric cancer cell (MGC-803): DFT, QSAR and docking approaches. Heliyon. 2020, 6 (5), e03926. https://doi.org/10.1016/j.heliyon.2020.e03926
Pieper, U.; Kapadia, G.; Mevarech, M.; Herzberg, O. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure. 1998, 6 (1), 75–88. https://doi.org/10.1016/S0969-2126(98)00009-4
Raji, M. A.; Adekeye, J. O.; Kwaga, J. K. P.; Bale, J. O. O. Antimicrobial effects of Acacia nilotica and Vitex doniana on the thermophilic campylobacter species. African J Sci Technol. 2002, 3 (2), 9–13. https://doi.org/10.4314/ajst.v3i2.15262
Roozbeh, N.; Darvish, L. Acacia nilotica: new plant for help in pelvic organ prolapse. J Menopausal Med 2016, 22 (3), 129. https://doi.org/10.6118/jmm.2016.22.3.129
Salvatore, P. P.; Zhang, Y. Tuberculosis molecular basis of pathogenesis. Reference Module in Biomedical Sciences. 2017. https://doi.org/10.1016/B978-0-12-801238-3.95697-6
Sarkiyayi, S.; Abdul Rasheed, K. Properties of Acacia nilotica leaf extract: A preliminary investigation on anti-typhoid. Int J Curr Biochem Res. 2013, 1 (2), 9–14.
Shil, A.; Akter, A.; Sultana, A.; Halder, S.K.; Himel, M.K.; Targeting Shikimate Kinase Pathway of Acinetobacter baumannii: A Structure-Based Computational Approach to Identify Antibacterial Compounds. J. Tropical Med. 2023, https://doi.org/10.1155/2023/6360187
Singh, R.; Singh, B.; Singh, S.; Kumar, N.; Kumar, S.; Arora, S. Umbelliferone–an antioxidant isolated from Acacia nilotica (L.) Willd. Ex. Del. Food Chem. 2010, 120, 825–830. https://doi.org/10.1016/j.foodchem.2009.11.022
Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021, 71 (3), 209–249. https://doi.org/10.3322/caac.21660
Tanko, Y.; Abdulazeez, A.; Muhammad, A.; Jimoh, A.; Mohammed, K. H.; Mohammed, A. Effect of methanol crude leaves extract and aqueous fraction of Acacia nilotica on lipid profile and liver enzymes on alloxan-induced diabetic wistar rats. J. Exp Biol. 2014, 2 (3), 36–40. https://doi.org/10.1242/jeb.105148
Taylor, L. Plant-based drugs and medicines. Square One Publishers, 2000.
Thiagarajan, K.; Mohan, S.; Roy, T. K. Chandrasekaran R. Antiproliferative effect of Acacia nilotica (L.) leaf extract rich in ethyl gallate against human carcinoma cell line KB. Indian J Pharmacol. 2020, 52 (6), 488–494. https://doi.org/10.4103/ijp.IJP_223_17
Wang, S.; Zhou, K.; Yang, X.; Zhang, B.; Zhao, Z.; Xiao, Y.; Yang, X.; Yang, H.; Guddat, L. W.; Li, J.; Rao, Z. Structural insights into substrate recognition by the type VII secretion system. Protein Cell. 2020, 11 (2), 124–137. https://doi.org/10.1007/s13238-019-00671-z
[WHO] World Health Statistics. World Health Statistics 2018: Monitoring health for the SDGs, sustainable development goals. WHO, 2018. https://apps.who.int/iris/handle/10665/272596 (accessed 2023-10-02).
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21 (5), 559. https://doi.org/10.3390/molecules21050559
Yusuf, A. Z.; Zakir, A.; Shemau, Z.; Abdullahi, M.; Halima, S. A. Phytochemical analysis of the methanol leaves extract of Paullinia pinnata Linn. J Pharmacognosy Phytother. 2014, 6 (2), 10–16. https://doi.org/10.5897/JPP2013.0299