Foundations and applications of the orbital theory in chemistry: A philosophical perspective

Main Article Content

Ricardo Vivas-Reyes
Daniela Navarro
Luis Eduardo Cortes

Abstract

The concept of atomic and molecular orbitals has been a fundamental pillar in modern chemistry, shedding light on the structures and reactivity of chemical compounds. This article examines the evolution and significance of orbital theory, its applications in chemistry, and the ongoing debate about the existence of orbitals from both physics and chemistry perspectives. Philosophical aspects related to the ontology of orbitals are explored, emphasizing the complex interplay between mathematical abstractions and tangible reality. The multifaceted nature of orbitals, their role in quantum mechanics, and their implications for understanding the quantum realm are discussed. While the debate surrounding the ontological status of orbitals remains ongoing, it highlights the profound nature of inquiries into the fundamental essence of reality. This exploration underscores the significance of continuous research and discourse in advancing our understanding of these fundamental constituents of the quantum world.

Metrics

Metrics Loading ...

Article Details

How to Cite
Vivas-Reyes, R., Navarro, D., & Cortes, L. E. (2024). Foundations and applications of the orbital theory in chemistry: A philosophical perspective. Eclética Química, 49, e–1498. https://doi.org/10.26850/1678-4618.eq.v49.2024.e1498
Section
Original articles

References

Armarego, W. L. F.; Chai, C. L. L. Purification of laboratory chemicals; Butterworth-Heinemann, 2003.

Atkins, P. W.; Paula, J. Química física; Oxford University Press, 2010.

Bader, R. F. W. Atoms in molecules: a quantum theory; Oxford University Press, 1990.

Bensaude-Vincent, B.; Simon, J. Chemistry: The Impure Science; Imperial College Press, 2008.

Boys, S. F. Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System. Proceedings of the Royal Society of London Series A. 1950, 200 (1064), 542–554. https://doi.org/10.1098/rspa.1950.0036

Bruice, P. Y. Organic chemistry; Pearson, 2017.

Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136 (15), 150901. https://doi.org/10.1063/1.4704546

Chen, P.; Fan, D.; Selloni, A.; Carter, E. A.; Arnold, C. B.; Zhang, Y.; Gross, A. S.; Chelikowsky, J. R.; Yao, N. Observation of electron orbital signatures of single atoms within metal-phthalocyanines using atomic force microscopy. Nat. Commun. 2023, 14, 1460. https://doi.org/10.1038/s41467-023-37023-9

Esfeld, M.; Lazarovici, D.; Hubert, M.; Dürr, D. The ontology of Bohmian mechanics. Brit. J. Phil. Sci. 2013, 65 (4), 773–796. https://doi.org/10.1093/bjps/axt019

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

Fujiwara, T. Catalysis in asymmetric synthesis; Wiley, 2009.

Kaskel, S. The Chemistry of Metal-Organic Frameworks; John Wiley & Sons, 2016.

Klein, D. R. Organic chemistry; Wiley, 2017.

Labarca, M.; Lombardi, O. ‘Why orbitals do not exist?’ Found. Chem. 2010, 12, 149–157. https://doi.org/10.1007/s10698-010-9086-5

Ladyman, J.; Ross, D. The World in the Wave Function: A Metaphysics for Quantum Chemistry. In: Ladyman, J.; Ross, D.; Spurrett, D.; Collier, J. (Ed.). Everything Must Go; Oxford University Press, 2007. p. 355–376.

Lamoureux, G.; Ogilvie, J. F. Orbitals in general chemistry, part II: mathematical realities. Quím. Nova. 2021, 44 (3), 348–354. https://doi.org/10.21577/0100-4042.20170664

Levine, I. N. Quantum Chemistry; Pearson, 2017.

Lombardi, O.; Labarca, M. The ontological autonomy of the chemical world: a response to Needham. Found. Chem. 2006, 8 (1), 81–92. https://doi.org/10.1007/s10698-005-9004-4

McQuarrie, D. A. Quantum Chemistry; International Thomson Editores, 2008.

McWeeny, R. Coulson’s valence; Oxford University Press, 2002.

Morrison, M. Emergence, Reduction, and Theoretical Principles: Rethinking Fundamentalism. Philos. Sci. 2006, 73 (5), 730–741. https://doi.org/10.1086/518746

Morrison, R. T.; Boyd, R. N. Química organica; Prentice-Hall, 1987.

Mulder, P. Are Orbitals Observable? Hyle. 2011, 17 (1), 24–35.

Ogilvie. J. F. The nature of the chemical bond—1990: There are no such things as orbitals! Chem. Educ. 1990, 67 (4), 280–289. https://doi.org/10.1021/ed067p280

Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press, 1989.

Pauling, L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc. 1931, 53 (4), 1367–1400. https://doi.org/10.1021/ja01355a027

Perdew, J. P.; Schmidt, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 2001, 577 (1), 1–20. https://doi.org/10.1063/1.1390175

Popelier, P. L. A. Atoms in molecules: an introduction; Pearson College Div, 2000.

Scerri, E. R. The failure of reduction and how to resist disunity of the sciences in the context of chemical education. Science & Education. 2000a, 9 (5), 405–425. https://doi.org/10.1023/A:1008719726538

Scerri, E. R. Have orbitals really been observed? J. Chem. Educ. 2000b, 77 (11), 1492–1494. https://doi.org/10.1021/ed077p1492

Scerri, E. R. Just how ab initio is ab initio quantum chemistry? Found. Chem. 2004, 6 (1), 93–116. https://doi.org/10.1023/B:FOCH.0000020998.31689.16

Scerri, E. R. The Periodic Table: Its Story and Its Significance; Oxford University Press, 2006.

Scerri, E. R. The Recently Claimed Observation of Atomic Orbitals and Some Related Philosophical Issues. Philos. Sci. 2001, 68 (S3), S76–S88. https://doi.org/10.1086/392899

Schrodinger, E. Quantisierung als Eigenwertproblem. Annalen der Physik. 1926, 384, 361-376. https://doi.org/10.1002/andp.19263840404

Schwarz, W. H. E. Measuring orbitals: provocation or reality? Angew. Chemi. 2006, 45 (10), 1508–1517. https://doi.org/10.1002/anie.200501333

Shaik, S.; Hiberty, P. C. A chemist’s guide to valence bond theory; John Wiley & Sons, 2008.

Smith, M. B.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons, 2006. https://doi.org/10.1002/0470084960

Sordo, T. L.; García-Fernández, E. Teoría del funcional de la densidad: una introducción práctica; John Wiley & Sons, 2014.

Szabo, A.; Ostlund, N. S. Modern quantum chemistry: Introduction to advanced electronic structure theory; Dover Publications, 1996.

Van Brakel, J. On the neglect of the philosophy of chemistry Found. Chem. 1999, 1, 111–174. https://doi.org/10.1023/a:1009936404830

Van Brakel, J. Philosophy of Chemistry: Between the Manifest and the Scientific Image; Leuven University Press, 2000.

Vivas-Reyes, R. Filosofía de la Química: un área ampliamente olvidada. Rev. Acad. Colomb. Cienc. 2009, 33 (126), 165–174. https://doi.org/10.18257/raccefyn.33(126).2009.1817

Vivas-Reyes, R.; Aria, A. Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data. Eclét. Quím. 2008, 33 (3), 69–76. https://doi.org/10.1590/S0100-46702008000300010