Determination of parameters and kinetic evaluation for chromium (VI) removal using four resins
Main Article Content
Abstract
This research aimed to identify optimal studied variables for chromium (VI) removal using four resins (IRA 96, IRA 400, DOWEX 1x8, and LEWATIT). A 1,5-diphenylcarbazide method was used for the quantification of chromium (VI). A factorial design with triple replication at the center point was used to evaluate pH, resin dose (g/100 mL), and initial chromium (VI) concentration. The optimal values for the four resins were a pH of 3, a resin concentration of 0.15 g/100 mL of solution, and an initial concentration of 10 mg/L of chromium. Then, an ANOVA study was done to compare the resins results using a p-value <0.05. The DOWEX resin presented the highest removal percentage (98.39%) for a reaction period of 45 minutes, with an exponential model that fits a pseudo-first-order kinetics with a coefficient of determination equal to 0.967.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Bajpai, S.; Dey, A.; Jha, M. K.; Gupta, S. K.; Gupta, A. Removal of hazardous hexavalent chromium from aqueous solution using divinylbenzene copolymer resin. Int. J. Environ. Sci. Technol. 2012, 9 (4), 683–690. https://doi.org/10.1007/s13762-012-0099-6
Bhatti, A. A.; Memon, S.; Memon, N.; Bhatti, A. A.; Solangi, I. B. Evaluation of chromium(VI) sorption efficiency of modified Amberlite XAD-4 resin. Arab. J. Chem. 2017, 10 (Suppl. 1), S1111–S1118. https://doi.org/10.1016/j.arabjc.2013.01.020
Coşkun, R.; Er, E.; Delibaş, A. Synthesis of novel resin containing carbamothiolylimidamide group and application for Cr(VI) removal. Polym. Bull. 2018, 75 (3), 963–983. https://doi.org/10.1007/s00289-017-2068-1
Costa, A. W. M. C. Produção de biossorvente magnetizado à base de biopolímeros do tipo polissacarídeo, para remoção de cromo (VI) de efluentes industriais. Tese (Doutorado em Biotecnologia), Universidade Federal de Sergipe, São Cristóvão, SE, 2017.
Gaikwad, M. S.; Balomajumder, C. Simultaneous rejection of fluoride and Cr(VI) from synthetic fluoride-Cr(VI) binary water system by polyamide flat sheet reverse osmosis membrane and prediction of membrane performance by CFSK and CFSD models. J. Mol. Liq. 2017, 234, 194–200. https://doi.org/10.1016/j.molliq.2017.03.073
Gorman, C.; Seidel, C.; Henrie, T.; Huang, L.; Thompson, R. Pilot Testing Strong Base Anion Exchange for CrVI Removal. Journal AWWA, 2016, 108 (4), E240–E246. https://doi.org/10.5942/jawwa.2016.108.0028
Hashem, A.; Momen, A.; Hasan, M.; Nur-A-Tomal, S.; Sheikh, H. R. Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent. Int. J. Environ. Sci. Technol. 2018, 16, 1395–1404. https://doi.org/10.1007/s13762-018-1714-y
Hu, S.; Li, D.; Huang, C.; Sun, D.; Yuan, X. A continuous electrocoagulation system with pH auto-adjusting by endogenous products to treat Cr(VI)-contaminated soil flushing solution. Sep. Purif. Technol. 2017, 189, 213–219. https://doi.org/10.1016/j.seppur.2017.07.081
Kahraman, H. T.; Pehlivan, E. Evaluation of anion-exchange resins on the removal of Cr(VI) polluted water: Batch ion-exchange modeling. Arab. J. Geosci. 2019, 12, 532. https://doi.org/10.1007/s12517-019-4677-5
Korak, J. A.; Huggins, R.; Arias-Paic, M. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal. Water Res. 2017, 118, 141–151. https://doi.org/10.1016/j.watres.2017.03.018
Kusku, O.; Rivas, B. L.; Urbano, B. F.; Arda, M.; Kabay, N.; Bryjak, M. A comparative study of removal of Cr(VI) by ion exchange resins bearing quaternary ammonium groups. J. Chem. Technol. Biotechnol. 2014, 89 (6), 851–857. https://doi.org/10.1002/jctb.4320
Li, X.; Shi, S.; Cao, H.; Li, Y.; Xu, D. Comparative Study of Chromium(VI) Removal from Simulated Industrial Wastewater with Ion Exchange Resins. Russ. J. Phys. Chem. A. 2018, 92, 1229–1236. https://doi.org/10.1134/S0036024418060237
Liu, X.; Li, Y.; Wang, C.; Ji, M. Cr(VI) removal by a new type of anion exchange resin DEX-Cr: Adsorption affecting factors, isotherms, kinetics, and desorption regeneration. Environ. Prog. Sustain. Energy. 2015, 34 (2), 387–393. https://doi.org/10.1002/ep.11998
Ok, Y. S.; Jeon, C. Selective adsorption of the gold–cyanide complex from waste rinse water using Dowex 21K XLT resin. J. Ind. Eng. Chem. 2014, 20 (4), 1308–1312. https://doi.org/10.1016/j.jiec.2013.07.010
Patel, P. K.; Nagireddi, S.; Uppaluri, R. V. S.; Pandey, L. M. Batch adsorption characteristics of Dowex Marathon MSA commercial resin for Au(III) removal from synthetic electroless plating solutions. Mater. Today. Proc. 2022, 68 (4), 824–829. https://doi.org/10.1016/j.matpr.2022.06.258
Pflaum, R. T.; Howick, L. C. The Chromium-Diphenylcarbazide Reaction. J. Am. Chem. Soc. 1956, 78, 4862–4866. https://doi.org/10.1021/ja01600a014
Polowczyk, I.; Urbano, B. F.; Rivas, B. L.; Bryjak, M.; Kabay, N. Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-d-glucamine groups. Chem. Eng. J. 2016, 284, 395–404. https://doi.org/10.1016/j.cej.2015.09.018
Sadyrbaeva, T. Z. Removal of chromium (VI) from aqueous solutions using a novel hybrid liquid membrane—Electrodialysis process. Chem. Eng. Process.: Process Intensif. 2016, 99, 183–191. https://doi.org/10.1016/j.cep.2015.07.011
Tümer, A. E.; Edebali, S. Artificial Neural Network Approach for Modeling of Cr(VI) Adsorption from Waste Water by Lewatit MP64 and Dowex 1×8. 2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE), Gaza, Palestine, 2019. https://doi.org/10.1109/PICECE.2019.8747199
Wang, C.-C.; Du, X.-D.; Li, J.; Guo, X.-X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Appl. Catal. B: Environ. 2016, 193, 198–216. https://doi.org/10.1016/j.apcatb.2016.04.030
Xie, B.; Shan, C.; Xu, Z.; Li, X.; Zhang, X.; Chen, J.; Pan, B. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chem. Eng. J. 2017, 308, 791–797. https://doi.org/10.1016/j.cej.2016.09.123
Xing, X.; Alharbi, N. S.; Ren, X.; Chen, C. A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. J. Environ. Chem. Eng. 2022, 10 (2), 107325. https://doi.org/10.1016/j.jece.2022.107325