Determination of parameters and kinetic evaluation for chromium (VI) removal using four resins
PDF
EPUB

Keywords

resins
DOWEX
chromium (VI)
pseudo first order
kinetics

How to Cite

Ramírez-Revilla, S. A., Camacho-Valencia, D. ., & Ortiz-Romero, D. (2024). Determination of parameters and kinetic evaluation for chromium (VI) removal using four resins. Eclética Química, 49, e–1402. https://doi.org/10.26850/1678-4618.eq.v49.2024.e1402

Abstract

This research aimed to identify optimal studied variables for chromium (VI) removal using four resins (IRA 96, IRA 400, DOWEX 1x8, and LEWATIT). A 1,5-diphenylcarbazide method was used for the quantification of chromium (VI). A factorial design with triple replication at the center point was used to evaluate pH, resin dose (g/100 mL), and initial chromium (VI) concentration. The optimal values for the four resins were a pH of 3, a resin concentration of 0.15 g/100 mL of solution, and an initial concentration of 10 mg/L of chromium. Then, an ANOVA study was done to compare the resins results using a p-value <0.05. The DOWEX resin presented the highest removal percentage (98.39%) for a reaction period of 45 minutes, with an exponential model that fits a pseudo-first-order kinetics with a coefficient of determination equal to 0.967.

https://doi.org/10.26850/1678-4618.eq.v49.2024.e1402
PDF
EPUB

References

Bajpai, S.; Dey, A.; Jha, M. K.; Gupta, S. K.; Gupta, A. Removal of hazardous hexavalent chromium from aqueous solution using divinylbenzene copolymer resin. Int. J. Environ. Sci. Technol. 2012, 9 (4), 683–690. https://doi.org/10.1007/s13762-012-0099-6

Bhatti, A. A.; Memon, S.; Memon, N.; Bhatti, A. A.; Solangi, I. B. Evaluation of chromium(VI) sorption efficiency of modified Amberlite XAD-4 resin. Arab. J. Chem. 2017, 10 (Suppl. 1), S1111–S1118. https://doi.org/10.1016/j.arabjc.2013.01.020

Coşkun, R.; Er, E.; Delibaş, A. Synthesis of novel resin containing carbamothiolylimidamide group and application for Cr(VI) removal. Polym. Bull. 2018, 75 (3), 963–983. https://doi.org/10.1007/s00289-017-2068-1

Costa, A. W. M. C. Produção de biossorvente magnetizado à base de biopolímeros do tipo polissacarídeo, para remoção de cromo (VI) de efluentes industriais. Tese (Doutorado em Biotecnologia), Universidade Federal de Sergipe, São Cristóvão, SE, 2017.

Gaikwad, M. S.; Balomajumder, C. Simultaneous rejection of fluoride and Cr(VI) from synthetic fluoride-Cr(VI) binary water system by polyamide flat sheet reverse osmosis membrane and prediction of membrane performance by CFSK and CFSD models. J. Mol. Liq. 2017, 234, 194–200. https://doi.org/10.1016/j.molliq.2017.03.073

Gorman, C.; Seidel, C.; Henrie, T.; Huang, L.; Thompson, R. Pilot Testing Strong Base Anion Exchange for CrVI Removal. Journal AWWA, 2016, 108 (4), E240–E246. https://doi.org/10.5942/jawwa.2016.108.0028

Hashem, A.; Momen, A.; Hasan, M.; Nur-A-Tomal, S.; Sheikh, H. R. Chromium removal from tannery wastewater using Syzygium cumini bark adsorbent. Int. J. Environ. Sci. Technol. 2018, 16, 1395–1404. https://doi.org/10.1007/s13762-018-1714-y

Hu, S.; Li, D.; Huang, C.; Sun, D.; Yuan, X. A continuous electrocoagulation system with pH auto-adjusting by endogenous products to treat Cr(VI)-contaminated soil flushing solution. Sep. Purif. Technol. 2017, 189, 213–219. https://doi.org/10.1016/j.seppur.2017.07.081

Kahraman, H. T.; Pehlivan, E. Evaluation of anion-exchange resins on the removal of Cr(VI) polluted water: Batch ion-exchange modeling. Arab. J. Geosci. 2019, 12, 532. https://doi.org/10.1007/s12517-019-4677-5

Korak, J. A.; Huggins, R.; Arias-Paic, M. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal. Water Res. 2017, 118, 141–151. https://doi.org/10.1016/j.watres.2017.03.018

Kusku, O.; Rivas, B. L.; Urbano, B. F.; Arda, M.; Kabay, N.; Bryjak, M. A comparative study of removal of Cr(VI) by ion exchange resins bearing quaternary ammonium groups. J. Chem. Technol. Biotechnol. 2014, 89 (6), 851–857. https://doi.org/10.1002/jctb.4320

Li, X.; Shi, S.; Cao, H.; Li, Y.; Xu, D. Comparative Study of Chromium(VI) Removal from Simulated Industrial Wastewater with Ion Exchange Resins. Russ. J. Phys. Chem. A. 2018, 92, 1229–1236. https://doi.org/10.1134/S0036024418060237

Liu, X.; Li, Y.; Wang, C.; Ji, M. Cr(VI) removal by a new type of anion exchange resin DEX-Cr: Adsorption affecting factors, isotherms, kinetics, and desorption regeneration. Environ. Prog. Sustain. Energy. 2015, 34 (2), 387–393. https://doi.org/10.1002/ep.11998

Ok, Y. S.; Jeon, C. Selective adsorption of the gold–cyanide complex from waste rinse water using Dowex 21K XLT resin. J. Ind. Eng. Chem. 2014, 20 (4), 1308–1312. https://doi.org/10.1016/j.jiec.2013.07.010

Patel, P. K.; Nagireddi, S.; Uppaluri, R. V. S.; Pandey, L. M. Batch adsorption characteristics of Dowex Marathon MSA commercial resin for Au(III) removal from synthetic electroless plating solutions. Mater. Today. Proc. 2022, 68 (4), 824–829. https://doi.org/10.1016/j.matpr.2022.06.258

Pflaum, R. T.; Howick, L. C. The Chromium-Diphenylcarbazide Reaction. J. Am. Chem. Soc. 1956, 78, 4862–4866. https://doi.org/10.1021/ja01600a014

Polowczyk, I.; Urbano, B. F.; Rivas, B. L.; Bryjak, M.; Kabay, N. Equilibrium and kinetic study of chromium sorption on resins with quaternary ammonium and N-methyl-d-glucamine groups. Chem. Eng. J. 2016, 284, 395–404. https://doi.org/10.1016/j.cej.2015.09.018

Sadyrbaeva, T. Z. Removal of chromium (VI) from aqueous solutions using a novel hybrid liquid membrane—Electrodialysis process. Chem. Eng. Process.: Process Intensif. 2016, 99, 183–191. https://doi.org/10.1016/j.cep.2015.07.011

Tümer, A. E.; Edebali, S. Artificial Neural Network Approach for Modeling of Cr(VI) Adsorption from Waste Water by Lewatit MP64 and Dowex 1×8. 2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE), Gaza, Palestine, 2019. https://doi.org/10.1109/PICECE.2019.8747199

Wang, C.-C.; Du, X.-D.; Li, J.; Guo, X.-X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Appl. Catal. B: Environ. 2016, 193, 198–216. https://doi.org/10.1016/j.apcatb.2016.04.030

Xie, B.; Shan, C.; Xu, Z.; Li, X.; Zhang, X.; Chen, J.; Pan, B. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chem. Eng. J. 2017, 308, 791–797. https://doi.org/10.1016/j.cej.2016.09.123

Xing, X.; Alharbi, N. S.; Ren, X.; Chen, C. A comprehensive review on emerging natural and tailored materials for chromium-contaminated water treatment and environmental remediation. J. Environ. Chem. Eng. 2022, 10 (2), 107325. https://doi.org/10.1016/j.jece.2022.107325

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Eclética Química

Metrics

PDF views
114
Jun 07 '24Jun 10 '24Jun 13 '24Jun 16 '24Jun 19 '24Jun 22 '24Jun 25 '24Jun 28 '24Jul 01 '24Jul 04 '2410
|
Other format views
26
Jul 2024Jan 2025Jul 2025Jan 202612