Detection of dopamine using glassy carbon electrodes modified with AgNPs synthetized with Monteverdia ilicifolia extract

Main Article Content

Francielle Schremeta Humacayo
Joel Toribio Espinoza
Josiane de Fátima Padilha de Paula
Luma Clarindo Lopes
Christiana Andrade Pessoa
Cássia Gonçalves Magalhães

Abstract

This work reports a new application for a well-known medicinal plant used in Brazil. The green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Monteverdia ilicifolia (MI) leaves as stabilizing and reducing agent is described. The AgNPs-MI obtained were characterized by UV-VIS, FTIR, and Raman spectroscopies, DLS, zeta potential and FEG-SEM, which demonstrated that M. ilicifolia was effective at capping the AgNPs, yielding stable suspensions. These nanoparticles were deposited on glassy carbon electrodes, and they were efficiently applied as electrochemical sensors for the determination of dopamine (DA) using square wave voltammetry (SWV). The AgNPs-MI improved the electrochemical properties of the electrodes and enhanced their electroanalytical performance. The developed sensing device presented detection and quantification limits equal to 0.52 and 1.74 μmol L–1, respectively, towards DA determination. The proposed electrochemical sensor quantified this neurotransmitter successfully, confirming its potential as a new promising analytical detection tool for DA quality control.

Metrics

Metrics Loading ...

Article Details

How to Cite
Humacayo, F. S., Espinoza, J. T., de Paula, J. de F. P., Lopes, L. C., Pessoa, C. A., & Magalhães, C. G. (2023). Detection of dopamine using glassy carbon electrodes modified with AgNPs synthetized with Monteverdia ilicifolia extract. Eclética Química, 48(2), 35–48. https://doi.org/10.26850/1678-4618eqj.v48.2.2023.p35-48
Section
Original articles
Author Biography

Cássia Gonçalves Magalhães, State University of Ponta Grossa, Department of Chemistry, Ponta Grossa, Brazil.

Departamento de Química

References

Agência Nacional de Vigilância Sanitária (ANVISA), Guia para Validação de Métodos Analíticos e Bioanalíticos. Ministério da Saúde, Brasil (Resolução – RE n◦ 899, de 29 de maio de 2003), 2003. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0899_29_05_2003.html (accessed 2021-03-21).

Ahmad, A.; Syed, F.; Imran, M.; Khan, A. U.; Tahir, K.; Khan, Z. U. H.; Yuan, Q. Phytosynthesis and antileishmanial activity of gold nanoparticles by Maytenus royleanus. J. Food Biochem. 2016a, 40 (4), 420–427. https://doi.org/10.1111/jfbc.12232

Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Taj, R.; Khan, A. U.; Hameed, M. U.; Yuan, Q. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb. Pathog. 2016b 99, 271–281. https://doi.org/10.1016/j.micpath.2016.08.031

Ahmad, T.; Bustam, M. A.; Irfan, M.; Moniruzzaman, M.; Asghar, H. M. A.; Bhattacharjee, S. Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotech. Appl. Biochem. 2019, 66 (4), 698–708. https://doi.org/10.1002/bab.1787

Barbosa, L. C. A. Espectroscopia no Infravermelho na Caracterização de Compostos Orgânicos, Editora UFV, 2007.

Bastos-Arrieta, J.; Florido, A.; Pérez-Ràfols, C.; Serrano, N.; Fiol, N.; Poch, J.; Villaescusa, I. Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. Nanomaterials. 2018, 8 (11), 946. https://doi.org/10.3390/nano8110946

Blum, S. A.; Zahrebelnei, F.; Nagata, N.; Zucolotto, V.; Mattoso, L. H. C.; Pessoa, C. A.; K. Wohnrath, K. Experimental Design to Enhance Dopamine Electrochemical Detection Using Carbon Paste Electrodes. Braz. J. Analytical Chem. 2021, 8 (32), 178–197. https://doi.org/10.30744/brjac.2179-3425.AR-31-2021

Bojko, L.; Jonge, G.; Lima, D.; Lopes, L. C.; Viana, A. G.; Garcia, J. R.; Pessôa, C. A.; Wohnrath, K.; Inaba, J. Porphyran-capped silver nanoparticles as a promising antibacterial agent and electrode modifier for 5-fluorouracil electroanalysis. Carb. Res. 2020, 498, 108193. https://doi.org/10.1016/j.carres.2020.108193

Brett, C. M. A.; Brett, A. M. O. Electrochemistry: Principles, Methods, and Applications, Oxford University Press, 1993.

Broli, N.; Vallja, L.; Shehu, A.; Vasjari, M. Determination of catechol in extract of tea using carbon paste electrode modified with banana tissue. J. Food Process Preserv. 2019, 43 (6), e13838. https://doi.org/10.1111/jfpp.13838

Chelly, M.; Chelly, S.; Zribi, R.; Bouaziz-Ketata, H.; Gdoura, R.; Lavanya, N.; Veerapandi, G.; Sekar, C.; Neri, G. Synthesis of silver and gold nanoparticles from Rumex roseus plant extract and their application in electrochemical sensors. Nanomaterials. 2021, 11 (3), 739. https://doi.org/10.3390/nano11030739

Efavi, J. K.; Nyankson, E.; Kyeremeh, K.; Manu, G. P.; Asare, K.; Yeboah, N. Monodispersed AgNPs Synthesized from the nanofactories of Theobroma cacao (cocoa) leaves and pod husk and their antimicrobial activity. Int. J. Biomat. 2022, 2022, 4106558. https://doi.org/10.1155/2022/4106558

Grzygorczyk, S.; Ezpinoza, J. T.; Paula, J. F. P.; Boscardin, P. M. D.; Nunes, D. S.; Sandri, M. C. M.; Magalhães, C. G. Evaluation of the biotechnological potential of Monteverdia salicifolia (Mart ex. Reissek) Biral. Orbital: Electron. J. Chem. 2021, 13 (2), 140–144. https://doi.org/10.17807/orbital.v13i2.1545

Haddad, Z.; Abid, C.; Oztop, H. F.; Mataoui, A. A review on how the researchers prepare their nanofluids. Int. J. Therm. Sci. 2014, 76, 168–189. https://doi.org/10.1016/j.ijthermalsci.2013.08.010

Huq, A.; Ashrafudoulla, M.; Rahman, M.; Balusamy, R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers. 2022, 14 (4), 742–764. https://doi.org/10.3390/polym14040742

International Conference on Harmonisation (ICH). Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1). ICH Expert Working Group, 2005. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed 2019-05-22).

Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021, 19 (1), 355–374. https://doi.org/10.1007/s10311-020-01074-x

Karuvantevida, N.; Razia, M.; Bhuvaneshwar, R.; Sathishkumar, G.; Prabukumar, S.; Sivaramakrishnan, S. Bioactive flavonoid used as a stabilizing agent of mono and bimetallic nanomaterials for multifunctional activities. J. Pure Appl. Microbiol. 2022, 16 (3), 1652–1662. https://doi.org/10.22207/JPAM.16.3.03

Lima, D.; Calaça, G. N.; Viana, A. G.; Pessôa, C. A. Porphyran-capped gold nanoparticles modified carbon paste electrode: A simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil. Appl. Surf. Sci. 2018, 427 (Part B), 742–753. https://doi.org/10.1016/j.apsusc.2017.08.228

Lima Filho, M. M. S.; Correa, A. A.; Silva, F. D. C.; Carvalho, F. A. O.; Mascaro, L. H.; Oliveira, T. M. B. F. A glassy carbon electrode modified with silver nanoparticles and functionalized multi-walled carbon nanotubes for voltammetric determination of the illicit growth promoter dienestrol in animal urine. Microchim. Acta. 2019, 186, 525. https://doi.org/10.1007/s00604-019-3645-9

Lin, J.; Yeap, S. P.; Che, H. X.; Low, S. C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. https://doi.org/10.1186/1556-276X-8-381

Memon, R.; Memon, A. A.; Nafady, A.; Sirajuddin; Sherazi, S. T. H.; Balouch, A.; Memon, K.; Brohi, N. A.; Najeeb, A. Electrochemical sensing of dopamine via bio-assisted synthesized silver nanoparticles. Int. Nano Lett. 2021, 11 (3), 263–271. https://doi.org/10.1007/s40089-021-00339-9

Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Pajak, B.; Slonska, A.; Cymerys, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Polyphenol-conjugated bimetallic Au@AgNPs for improved wound healing. Int. J. Nanomed. 2020, 15, 4969–4990. https://doi.org/10.2147/IJN.S252027

Périco, L. L.; Rodrigues, V. P.; Almeida, L. F. R.; Fortuna-Perez, A. P.; Vilegas, W.; Hiruma-Lima, C. A. Maytenus ilicifolia Mart. ex Reissek. In Medicinal and Aromatic Plants of South America. Albuquerque, U., Patil, U., Máthé, Á, Eds.; Springer, 2018; Vol. 5, 323–335. https://doi.org/10.1007/978-94-024-1552-0_29

Relação Nacional de Plantas Medicinais de Interesse ao SUS (RENISUS). Espécies vegetais. Ministério da Saúde, 2009. https://www.gov.br/saude/pt-br/composicao/sctie/daf/pnpmf/ppnpmf/arquivos/2014/renisus.pdf (accessed 2022-10-06).

Sakthivel, R.; Dhanalakshmi, S.; Chen, S.-M.; Chen, T.-W.; Selvam, V.; Ramaraj, S. K.; Weng, W.-H.; Leung, W.-H. A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 2017, 12, 9288–9300. https://doi.org/10.20964/2017.10.71

Selvolini, G.; Lazzarini, C.; Marrazza, G. Electrochemical nanocomposite single-use sensor for dopamine detection. Sensors. 2019, 19 (14), 3097. https://doi.org/10.3390/s19143097

Tabach, R.; Duarte‐Almeida, J. M.; Carlini, E. A. Pharmacological and toxicological study of Maytenus ilicifolia leaf extract. Part II—Clinical Study (Phase I). Phytother. Res. 2017, 31 (6), 921–926. https://doi.org/10.1002/ptr.5816

Tošović, J.; Marković, S. Reproduction and interpretation of the UV–vis spectra of some flavonoids. Chem. Pap. 2017, 71 (3), 543–552. https://doi.org/10.1007/s11696-016-0002-x

Van Der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples. J. Electroanal. Chem. 2015, 752, 1–11. https://doi.org/10.1016/j.jelechem.2015.06.001

Vinay, M. M.; Nayaka, Y. A. Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine. J. Sci.-Adv. Mater. Dev. 2019, 4 (3), 442–450. https://doi.org/10.1016/j.jsamd.2019.07.006

Yu, H.-W.; Zhang, Z.; Jiang, J.-H.; Pan, H.-Z.; Chang, D. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode. J. Clin. Lab. Anal. 2018, 32, e22320. https://doi.org/10.1002/jcla.22320

Zablocka, I.; Wysocka-Zolopa, M.; Winkler, K. Electrochemical detection of dopamine at a gold electrode modified with a polypyrrole–mesoporous silica molecular sieves (MCM-48) film. Int. J. Mol. Sci. 2019, 20 (1), 111. https://doi.org/10.3390/ijms20010111

Zamarchi, F.; Vieira, I. C. Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract. J. Pharm. Biomed. Anal. 2021, 196, 113912. https://doi.org/10.1016/j.jpba.2021.113912

Zhang, L.; Ji, M.-Y.; Qiu, B.; Li, Q.-Y.; Zhang, K.-Y.; Liu, J.-C.; Dang, L.-S.; Li, M.-H. Phytochemicals and biological activities of species from the genus Maytenus. Med. Chem. Res. 2020, 29 (4), 575–606. https://doi.org/10.1007/s00044-020-02509-4