Detection of dopamine using glassy carbon electrodes modified with AgNPs synthetized with Monteverdia ilicifolia extract
Main Article Content
Abstract
This work reports a new application for a well-known medicinal plant used in Brazil. The green synthesis of silver nanoparticles (AgNPs) using the aqueous extract of Monteverdia ilicifolia (MI) leaves as stabilizing and reducing agent is described. The AgNPs-MI obtained were characterized by UV-VIS, FTIR, and Raman spectroscopies, DLS, zeta potential and FEG-SEM, which demonstrated that M. ilicifolia was effective at capping the AgNPs, yielding stable suspensions. These nanoparticles were deposited on glassy carbon electrodes, and they were efficiently applied as electrochemical sensors for the determination of dopamine (DA) using square wave voltammetry (SWV). The AgNPs-MI improved the electrochemical properties of the electrodes and enhanced their electroanalytical performance. The developed sensing device presented detection and quantification limits equal to 0.52 and 1.74 μmol L–1, respectively, towards DA determination. The proposed electrochemical sensor quantified this neurotransmitter successfully, confirming its potential as a new promising analytical detection tool for DA quality control.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Agência Nacional de Vigilância Sanitária (ANVISA), Guia para Validação de Métodos Analíticos e Bioanalíticos. Ministério da Saúde, Brasil (Resolução – RE n◦ 899, de 29 de maio de 2003), 2003. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2003/res0899_29_05_2003.html (accessed 2021-03-21).
Ahmad, A.; Syed, F.; Imran, M.; Khan, A. U.; Tahir, K.; Khan, Z. U. H.; Yuan, Q. Phytosynthesis and antileishmanial activity of gold nanoparticles by Maytenus royleanus. J. Food Biochem. 2016a, 40 (4), 420–427. https://doi.org/10.1111/jfbc.12232
Ahmad, A.; Wei, Y.; Syed, F.; Tahir, K.; Taj, R.; Khan, A. U.; Hameed, M. U.; Yuan, Q. Amphotericin B-conjugated biogenic silver nanoparticles as an innovative strategy for fungal infections. Microb. Pathog. 2016b 99, 271–281. https://doi.org/10.1016/j.micpath.2016.08.031
Ahmad, T.; Bustam, M. A.; Irfan, M.; Moniruzzaman, M.; Asghar, H. M. A.; Bhattacharjee, S. Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: Role of phenolic compounds and flavonoids. Biotech. Appl. Biochem. 2019, 66 (4), 698–708. https://doi.org/10.1002/bab.1787
Barbosa, L. C. A. Espectroscopia no Infravermelho na Caracterização de Compostos Orgânicos, Editora UFV, 2007.
Bastos-Arrieta, J.; Florido, A.; Pérez-Ràfols, C.; Serrano, N.; Fiol, N.; Poch, J.; Villaescusa, I. Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. Nanomaterials. 2018, 8 (11), 946. https://doi.org/10.3390/nano8110946
Blum, S. A.; Zahrebelnei, F.; Nagata, N.; Zucolotto, V.; Mattoso, L. H. C.; Pessoa, C. A.; K. Wohnrath, K. Experimental Design to Enhance Dopamine Electrochemical Detection Using Carbon Paste Electrodes. Braz. J. Analytical Chem. 2021, 8 (32), 178–197. https://doi.org/10.30744/brjac.2179-3425.AR-31-2021
Bojko, L.; Jonge, G.; Lima, D.; Lopes, L. C.; Viana, A. G.; Garcia, J. R.; Pessôa, C. A.; Wohnrath, K.; Inaba, J. Porphyran-capped silver nanoparticles as a promising antibacterial agent and electrode modifier for 5-fluorouracil electroanalysis. Carb. Res. 2020, 498, 108193. https://doi.org/10.1016/j.carres.2020.108193
Brett, C. M. A.; Brett, A. M. O. Electrochemistry: Principles, Methods, and Applications, Oxford University Press, 1993.
Broli, N.; Vallja, L.; Shehu, A.; Vasjari, M. Determination of catechol in extract of tea using carbon paste electrode modified with banana tissue. J. Food Process Preserv. 2019, 43 (6), e13838. https://doi.org/10.1111/jfpp.13838
Chelly, M.; Chelly, S.; Zribi, R.; Bouaziz-Ketata, H.; Gdoura, R.; Lavanya, N.; Veerapandi, G.; Sekar, C.; Neri, G. Synthesis of silver and gold nanoparticles from Rumex roseus plant extract and their application in electrochemical sensors. Nanomaterials. 2021, 11 (3), 739. https://doi.org/10.3390/nano11030739
Efavi, J. K.; Nyankson, E.; Kyeremeh, K.; Manu, G. P.; Asare, K.; Yeboah, N. Monodispersed AgNPs Synthesized from the nanofactories of Theobroma cacao (cocoa) leaves and pod husk and their antimicrobial activity. Int. J. Biomat. 2022, 2022, 4106558. https://doi.org/10.1155/2022/4106558
Grzygorczyk, S.; Ezpinoza, J. T.; Paula, J. F. P.; Boscardin, P. M. D.; Nunes, D. S.; Sandri, M. C. M.; Magalhães, C. G. Evaluation of the biotechnological potential of Monteverdia salicifolia (Mart ex. Reissek) Biral. Orbital: Electron. J. Chem. 2021, 13 (2), 140–144. https://doi.org/10.17807/orbital.v13i2.1545
Haddad, Z.; Abid, C.; Oztop, H. F.; Mataoui, A. A review on how the researchers prepare their nanofluids. Int. J. Therm. Sci. 2014, 76, 168–189. https://doi.org/10.1016/j.ijthermalsci.2013.08.010
Huq, A.; Ashrafudoulla, M.; Rahman, M.; Balusamy, R.; Akter, S. Green synthesis and potential antibacterial applications of bioactive silver nanoparticles: A review. Polymers. 2022, 14 (4), 742–764. https://doi.org/10.3390/polym14040742
International Conference on Harmonisation (ICH). Harmonised Tripartite Guideline. Validation of Analytical Procedures: Text and Methodology Q2 (R1). ICH Expert Working Group, 2005. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed 2019-05-22).
Jadoun, S.; Arif, R.; Jangid, N. K.; Meena, R. K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021, 19 (1), 355–374. https://doi.org/10.1007/s10311-020-01074-x
Karuvantevida, N.; Razia, M.; Bhuvaneshwar, R.; Sathishkumar, G.; Prabukumar, S.; Sivaramakrishnan, S. Bioactive flavonoid used as a stabilizing agent of mono and bimetallic nanomaterials for multifunctional activities. J. Pure Appl. Microbiol. 2022, 16 (3), 1652–1662. https://doi.org/10.22207/JPAM.16.3.03
Lima, D.; Calaça, G. N.; Viana, A. G.; Pessôa, C. A. Porphyran-capped gold nanoparticles modified carbon paste electrode: A simple and efficient electrochemical sensor for the sensitive determination of 5-fluorouracil. Appl. Surf. Sci. 2018, 427 (Part B), 742–753. https://doi.org/10.1016/j.apsusc.2017.08.228
Lima Filho, M. M. S.; Correa, A. A.; Silva, F. D. C.; Carvalho, F. A. O.; Mascaro, L. H.; Oliveira, T. M. B. F. A glassy carbon electrode modified with silver nanoparticles and functionalized multi-walled carbon nanotubes for voltammetric determination of the illicit growth promoter dienestrol in animal urine. Microchim. Acta. 2019, 186, 525. https://doi.org/10.1007/s00604-019-3645-9
Lin, J.; Yeap, S. P.; Che, H. X.; Low, S. C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. https://doi.org/10.1186/1556-276X-8-381
Memon, R.; Memon, A. A.; Nafady, A.; Sirajuddin; Sherazi, S. T. H.; Balouch, A.; Memon, K.; Brohi, N. A.; Najeeb, A. Electrochemical sensing of dopamine via bio-assisted synthesized silver nanoparticles. Int. Nano Lett. 2021, 11 (3), 263–271. https://doi.org/10.1007/s40089-021-00339-9
Orlowski, P.; Zmigrodzka, M.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Pajak, B.; Slonska, A.; Cymerys, J.; Celichowski, G.; Grobelny, J.; Krzyzowska, M. Polyphenol-conjugated bimetallic Au@AgNPs for improved wound healing. Int. J. Nanomed. 2020, 15, 4969–4990. https://doi.org/10.2147/IJN.S252027
Périco, L. L.; Rodrigues, V. P.; Almeida, L. F. R.; Fortuna-Perez, A. P.; Vilegas, W.; Hiruma-Lima, C. A. Maytenus ilicifolia Mart. ex Reissek. In Medicinal and Aromatic Plants of South America. Albuquerque, U., Patil, U., Máthé, Á, Eds.; Springer, 2018; Vol. 5, 323–335. https://doi.org/10.1007/978-94-024-1552-0_29
Relação Nacional de Plantas Medicinais de Interesse ao SUS (RENISUS). Espécies vegetais. Ministério da Saúde, 2009. https://www.gov.br/saude/pt-br/composicao/sctie/daf/pnpmf/ppnpmf/arquivos/2014/renisus.pdf (accessed 2022-10-06).
Sakthivel, R.; Dhanalakshmi, S.; Chen, S.-M.; Chen, T.-W.; Selvam, V.; Ramaraj, S. K.; Weng, W.-H.; Leung, W.-H. A novel flakes-like structure of molybdenum disulphide modified glassy carbon electrode for the efficient electrochemical detection of dopamine. Int. J. Electrochem. Sci. 2017, 12, 9288–9300. https://doi.org/10.20964/2017.10.71
Selvolini, G.; Lazzarini, C.; Marrazza, G. Electrochemical nanocomposite single-use sensor for dopamine detection. Sensors. 2019, 19 (14), 3097. https://doi.org/10.3390/s19143097
Tabach, R.; Duarte‐Almeida, J. M.; Carlini, E. A. Pharmacological and toxicological study of Maytenus ilicifolia leaf extract. Part II—Clinical Study (Phase I). Phytother. Res. 2017, 31 (6), 921–926. https://doi.org/10.1002/ptr.5816
Tošović, J.; Marković, S. Reproduction and interpretation of the UV–vis spectra of some flavonoids. Chem. Pap. 2017, 71 (3), 543–552. https://doi.org/10.1007/s11696-016-0002-x
Van Der Horst, C.; Silwana, B.; Iwuoha, E.; Somerset, V. Bismuth–silver bimetallic nanosensor application for the voltammetric analysis of dust and soil samples. J. Electroanal. Chem. 2015, 752, 1–11. https://doi.org/10.1016/j.jelechem.2015.06.001
Vinay, M. M.; Nayaka, Y. A. Iron oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine. J. Sci.-Adv. Mater. Dev. 2019, 4 (3), 442–450. https://doi.org/10.1016/j.jsamd.2019.07.006
Yu, H.-W.; Zhang, Z.; Jiang, J.-H.; Pan, H.-Z.; Chang, D. Simple strategy for sensitive detection of dopamine using CdTe QDs modified glassy carbon electrode. J. Clin. Lab. Anal. 2018, 32, e22320. https://doi.org/10.1002/jcla.22320
Zablocka, I.; Wysocka-Zolopa, M.; Winkler, K. Electrochemical detection of dopamine at a gold electrode modified with a polypyrrole–mesoporous silica molecular sieves (MCM-48) film. Int. J. Mol. Sci. 2019, 20 (1), 111. https://doi.org/10.3390/ijms20010111
Zamarchi, F.; Vieira, I. C. Determination of paracetamol using a sensor based on green synthesis of silver nanoparticles in plant extract. J. Pharm. Biomed. Anal. 2021, 196, 113912. https://doi.org/10.1016/j.jpba.2021.113912
Zhang, L.; Ji, M.-Y.; Qiu, B.; Li, Q.-Y.; Zhang, K.-Y.; Liu, J.-C.; Dang, L.-S.; Li, M.-H. Phytochemicals and biological activities of species from the genus Maytenus. Med. Chem. Res. 2020, 29 (4), 575–606. https://doi.org/10.1007/s00044-020-02509-4