Structural effect on the charge transfer and on the internal reorganization energy: Computational study

Main Article Content

Mohamed Jabha
Abdelah El Alaoui
Abdellah Jarid
El Houssine Mabrouk

Abstract

The effects of addition of thiophene, bridged phenyl-thiophene, thia-tetra-azacyclopenta-naphthalene, benzo-bis-thiadiazole, and pyrido(3,4-b)pyrazine to 9-(4-octyloxyphenyl)-2,7-divinylcabazole on the internal reorganization energies, electronic affinity, and ionization potential were studied using density functional theory (DFT). These compounds are characterized by their charge exchange potentials (donor-acceptor), which can be applied in energy conversion devices such as photovoltaic cells. The so-called internal reorganization concerns, above all, the positions of holes and points of high electron density on the molecular skeleton. Thus, valuable information is provided by the knowledge of the structure, the length of the desired oligomer and the nature of the radicals attached to the oligomer. Considering the available data, 2,7-divnyl-carbazole (CrV-H) is the basic oligomer to carry out this theoretical study by extending the choice of ligands and length order to other oligomers while setting charge mobility as the major objective. The λ+ of all the oligomers studied was lower than their λ except for the CrV-BBT oligomer, indicating a lower hole transfer cost than electron transfer cost with changes in molecular geometry during this process.

Metrics

Metrics Loading ...

Article Details

How to Cite
Jabha, M. ., El Alaoui, A., Jarid, A., & Mabrouk, E. H. (2022). Structural effect on the charge transfer and on the internal reorganization energy: Computational study. Eclética Química, 47(4), 55–68. https://doi.org/10.26850/1678-4618eqj.v47.4.2022.p55-68
Section
Original articles

References

Aly, S. M. B. Transfert D'électron Et D’énergie Photo-induits Dans Les Polyads, Oligomères Et Polymères Organiques Et Organométalliques. Ph.D. Thesis, University of Sherbrooke, 2009. https://library-rchives.canada.ca/eng/services/services-libraries/theses/Pages/item.aspx?idNumber=648383653 (accessed 2022-06-15)

André, J.-M.; Brédas, J.-L. Transfert d’électrons: des polymères conducteurs d'électricité aux diodes organiques électroluminescentes ou une avalanche de Prix Nobel. Bull. Acad. R. Belg. 2002, 13 (7), 273–289. https://doi.org/10.3406/barb.2002.28296

Baker, J.; Andzelm, J.; Muir, M.; Taylor, P. R. OH+H2→H2O+H. The importance of ‘exact exchange’ in density functional theory. Chem. Phys. Lett. 1995, 237 (1–2), 53–60. https://doi.org/10.1016/0009-2614(95)00299-J

Bally, T.; Carrupt, P.-A.; Weber, J. Comparison of the Performances of the Gaussian and Cadpac ab initio Program Packages on Different Computers. Chimia. 1991, 45 (11), 352–356. https://doi.org/10.2533/chimia.1991.352

Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; Emmott, J. M.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirchartz, T.; James R. Durrant, J. R.; McCulloch, I. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Mater. 2017, 16 (3), 363–369. https://doi.org/10.1038/nmat4797

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098. https://doi.org/10.1103/PhysRevA.38.3098

Berlin, Y. A.; Hutchison, G. R.; Rempala, P.; Ratner, M. A.; Michl, J. Charge Hopping in Molecular Wires as a Sequence of Electron-Transfer Reactions. J. Phys. Chem. A. 2003, 107 (19), 3970–3980. https://doi.org/10.1021/jp034225i

Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Origin of the Open Circuit Voltage of Plastic Solar Cells. Adv. Funct. Mater. 2001, 11 (5), 374–380. https://doi.org/10.1002/1616-3028

Burke, K.; Perdew, J. P.; Levy, M. Improving energies by using exact electron densities. Phys. Rev. A. 1996, 53 (5), R2915. https://doi.org/10.1103/PhysRevA.53.R2915

Camara, M. A. Modélisation du stockage de l’énergie photovoltaïque par supercondensateurs. Ph.D. Thesis, University of Paris-Est, France, 2011. https://tel.archives-ouvertes.fr/tel-00673218/ (accessed 2022-04-20)

Cheung, D. L.; Troisi, A. Theoretical Study of the Organic Photovoltaic Electron Acceptor PCBM: Morphology, Electronic Structure, and Charge Localization. J. Phys. Chem. C. 2010, 114 (48), 20479–20488. https://doi.org/10.1021/jp1049167

Dufil, Y. Monocouches auto‐assemblées et nanostructures de métaux nobles: Préparation et application au photovoltaïque. Ph.D. Dissertation, Queen’s University and University of Aix-Marseille, 2018.

Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80 (7), 3265. https://doi.org/10.1063/1.447079

Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W. SHORT COMMUNICATION: Solar cell efficiency tables (version 25). Prog. Photovol. 2005, 13 (1), 49–54. https://doi.org/10.1002/pip.598

Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107 (4), 1324–1338. https://doi.org/10.1021/cr050149z

Huixia, X.; Fang, W.; Kexiang, W.; Peng, S.; Jie, L.; Tingting, Y.; Hua, W.; Bingshe, X. Two novel bipolar Ir (III) complexes based on 9-(4-(pyridin-2-yl) phenyl)-9H-carbazole and N-heterocyclic ligand. Dyes Pigm. 2017, 146, 316–322. https://doi.org/10.1016/j.dyepig.2017.07.012

Jabha, M.; Abdelah, A. Study Optoelectronic and Geometric Properties of New compounds Based on Carbazole-thiophene Bridged for Solar Cells. Orbital: Electron. J. Chem. 2018, 10 (7), 552–560. https://doi.org/10.17807/orbital.v10i7.1322

Jabha, M.; El Alaoui, A.; Jarid, A.; Mabrouk, E. H. The Effect of Substitution and Polymerization of 2, 7-Divinylcarbazole-benzo-bis-thiadiazole on Optoelectronic Properties: A DFT Study. Orbital: Electron. J. Chem. 2021, 13 (4), 291–300. https://doi.org/10.17807/orbital.v13i4.1580

Jabha, M.; El Alaoui, A.; Jarid, A.; Mabrouk, E. H. Theoretically studying the optoelectronic properties of oligomers based on 2.7-divinyl-cabazole. Eclet. Quim. J. 2022, 47 (1), 40–54. https://doi.org/10.26850/1678-4618eqj.v47.1.2022.p40-54

Khoudir, A.; Maruani, J.; Tronc, M. SCF, CI and DFT Charge Transfers and XPS Chemical Shifts in Fluorinated Compounds. In Quantum Systems in Chemistry and Physics; Hernández-Laguna, A., Maruani, J., McWeeny, R., Wilson, S., Eds., Vol. 2; Springer, 2000; pp 57–89. https://doi.org/10.1007/0-306-48145-6_5

Koh, S. E.; Risko, C.; Silva Filho, D. A.; Kwon, O.; Facchetti, A.; Brédas, J.-L.; Marks, T. J.; Ratner, M. A. Modeling Electron and Hole Transport in Fluoroarene‐Oligothiopene Semiconductors: Investigation of Geometric and Electronic Structure Properties. Adv. Funct. Mater. 2008, 18 (2), 332–340. https://doi.org/10.1002/adfm.200700713

Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J.-F.; Leclerc, M. Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Adv. Funct. Mater. 2006, 16 (13), 1694–1704. https://doi.org/10.1002/adfm.200600171

Liu, X.; Rand, B. P.; Forrest, S. R. Engineering Charge-Transfer States for Efficient, Low-Energy-Loss Organic Photovoltaics. Trends Chem. 2019, 1 (9), 815–829. https://doi.org/10.1016/j.trechm.2019.08.001

Marcus, R. A. Relation between charge transfer absorption and fluorescence spectra and the inverted region. J. Phys. Chem. 1989, 93 (8), 3078–3086. https://doi.org/10.1021/j100345a040

Muth, M.-A.; Mitchell, W.; Tierney, S.; Lada, T. A.; Xue, X.; Richter, H.; Carrasco-Orozco, M.; Thelakkat, M. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono-and bis-fullerene adducts. J. Nanotechnol. 2013, 24 (48), 484001. https://doi.org/10.1088/0957-4484/24/48/484001

Ochterski, J. W.; Petersson, G. A.; Montgomery Junior, J. A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 1996, 104 (7), 2598. https://doi.org/10.1063/1.470985

Oukachmih, M. Université Toulouse-Paul Sabatier, France. 2003. (Doctoral Theses).

Petersson, G. A.; Al‐Laham, M. A. A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys. 1991, 94 (9), 6081 https://doi.org/10.1063/1.460447

Provencher, F. Dynamique de séparation de charges à l’hétérojonction de semi-conducteurs organiques. Ph.D. Thesis, University of Montreal, 2014. http://hdl.handle.net/1866/10654 (accessed 2022-02-24)

Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6‐31G* basis set for third‐row atoms. J. Comput. Chem. 2001, 22 (9), 976–984. https://doi.org/10.1002/jcc.1058

Rodríguez-Monge, L.; Larsson, S. Conductivity in polyacetylene. I. Ab initio calculation of charge localization, bond distances, and reorganization energy in model molecules. J. Chem. Phys. 1995, 102 (18), 7106. https://doi.org/10.1063/1.469104

Schwenn, P. E.; Burn, P. L.; Powell, B. J. Calculation of solid state molecular ionisation energies and electron affinities for organic semiconductors. Org. Electron. 2011, 12 (2), 394–403. https://doi.org/10.1016/j.orgel.2010.11.025

Sun, F.; Jin, R. DFT and TD-DFT study on the optical and electronic properties of derivatives of 1, 4-bis (2-substituted-1, 3, 4-oxadiazole) benzene. Arab. J. Chem. 2017, 10 (Suppl. 2), S2988–S2993. https://doi.org/10.1016/j.arabjc.2013.11.037