Structural effect on the charge transfer and on the internal reorganization energy: Computational study
Main Article Content
Abstract
The effects of addition of thiophene, bridged phenyl-thiophene, thia-tetra-azacyclopenta-naphthalene, benzo-bis-thiadiazole, and pyrido(3,4-b)pyrazine to 9-(4-octyloxyphenyl)-2,7-divinylcabazole on the internal reorganization energies, electronic affinity, and ionization potential were studied using density functional theory (DFT). These compounds are characterized by their charge exchange potentials (donor-acceptor), which can be applied in energy conversion devices such as photovoltaic cells. The so-called internal reorganization concerns, above all, the positions of holes and points of high electron density on the molecular skeleton. Thus, valuable information is provided by the knowledge of the structure, the length of the desired oligomer and the nature of the radicals attached to the oligomer. Considering the available data, 2,7-divnyl-carbazole (CrV-H) is the basic oligomer to carry out this theoretical study by extending the choice of ligands and length order to other oligomers while setting charge mobility as the major objective. The λ+ of all the oligomers studied was lower than their λ– except for the CrV-BBT oligomer, indicating a lower hole transfer cost than electron transfer cost with changes in molecular geometry during this process.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Aly, S. M. B. Transfert D'électron Et D’énergie Photo-induits Dans Les Polyads, Oligomères Et Polymères Organiques Et Organométalliques. Ph.D. Thesis, University of Sherbrooke, 2009. https://library-rchives.canada.ca/eng/services/services-libraries/theses/Pages/item.aspx?idNumber=648383653 (accessed 2022-06-15)
André, J.-M.; Brédas, J.-L. Transfert d’électrons: des polymères conducteurs d'électricité aux diodes organiques électroluminescentes ou une avalanche de Prix Nobel. Bull. Acad. R. Belg. 2002, 13 (7), 273–289. https://doi.org/10.3406/barb.2002.28296
Baker, J.; Andzelm, J.; Muir, M.; Taylor, P. R. OH+H2→H2O+H. The importance of ‘exact exchange’ in density functional theory. Chem. Phys. Lett. 1995, 237 (1–2), 53–60. https://doi.org/10.1016/0009-2614(95)00299-J
Bally, T.; Carrupt, P.-A.; Weber, J. Comparison of the Performances of the Gaussian and Cadpac ab initio Program Packages on Different Computers. Chimia. 1991, 45 (11), 352–356. https://doi.org/10.2533/chimia.1991.352
Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; Röhr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; Emmott, J. M.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirchartz, T.; James R. Durrant, J. R.; McCulloch, I. Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Mater. 2017, 16 (3), 363–369. https://doi.org/10.1038/nmat4797
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098. https://doi.org/10.1103/PhysRevA.38.3098
Berlin, Y. A.; Hutchison, G. R.; Rempala, P.; Ratner, M. A.; Michl, J. Charge Hopping in Molecular Wires as a Sequence of Electron-Transfer Reactions. J. Phys. Chem. A. 2003, 107 (19), 3970–3980. https://doi.org/10.1021/jp034225i
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C. Origin of the Open Circuit Voltage of Plastic Solar Cells. Adv. Funct. Mater. 2001, 11 (5), 374–380. https://doi.org/10.1002/1616-3028
Burke, K.; Perdew, J. P.; Levy, M. Improving energies by using exact electron densities. Phys. Rev. A. 1996, 53 (5), R2915. https://doi.org/10.1103/PhysRevA.53.R2915
Camara, M. A. Modélisation du stockage de l’énergie photovoltaïque par supercondensateurs. Ph.D. Thesis, University of Paris-Est, France, 2011. https://tel.archives-ouvertes.fr/tel-00673218/ (accessed 2022-04-20)
Cheung, D. L.; Troisi, A. Theoretical Study of the Organic Photovoltaic Electron Acceptor PCBM: Morphology, Electronic Structure, and Charge Localization. J. Phys. Chem. C. 2010, 114 (48), 20479–20488. https://doi.org/10.1021/jp1049167
Dufil, Y. Monocouches auto‐assemblées et nanostructures de métaux nobles: Préparation et application au photovoltaïque. Ph.D. Dissertation, Queen’s University and University of Aix-Marseille, 2018.
Frisch, M. J.; Pople, J. A.; Binkley, J. S. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80 (7), 3265. https://doi.org/10.1063/1.447079
Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W. SHORT COMMUNICATION: Solar cell efficiency tables (version 25). Prog. Photovol. 2005, 13 (1), 49–54. https://doi.org/10.1002/pip.598
Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107 (4), 1324–1338. https://doi.org/10.1021/cr050149z
Huixia, X.; Fang, W.; Kexiang, W.; Peng, S.; Jie, L.; Tingting, Y.; Hua, W.; Bingshe, X. Two novel bipolar Ir (III) complexes based on 9-(4-(pyridin-2-yl) phenyl)-9H-carbazole and N-heterocyclic ligand. Dyes Pigm. 2017, 146, 316–322. https://doi.org/10.1016/j.dyepig.2017.07.012
Jabha, M.; Abdelah, A. Study Optoelectronic and Geometric Properties of New compounds Based on Carbazole-thiophene Bridged for Solar Cells. Orbital: Electron. J. Chem. 2018, 10 (7), 552–560. https://doi.org/10.17807/orbital.v10i7.1322
Jabha, M.; El Alaoui, A.; Jarid, A.; Mabrouk, E. H. The Effect of Substitution and Polymerization of 2, 7-Divinylcarbazole-benzo-bis-thiadiazole on Optoelectronic Properties: A DFT Study. Orbital: Electron. J. Chem. 2021, 13 (4), 291–300. https://doi.org/10.17807/orbital.v13i4.1580
Jabha, M.; El Alaoui, A.; Jarid, A.; Mabrouk, E. H. Theoretically studying the optoelectronic properties of oligomers based on 2.7-divinyl-cabazole. Eclet. Quim. J. 2022, 47 (1), 40–54. https://doi.org/10.26850/1678-4618eqj.v47.1.2022.p40-54
Khoudir, A.; Maruani, J.; Tronc, M. SCF, CI and DFT Charge Transfers and XPS Chemical Shifts in Fluorinated Compounds. In Quantum Systems in Chemistry and Physics; Hernández-Laguna, A., Maruani, J., McWeeny, R., Wilson, S., Eds., Vol. 2; Springer, 2000; pp 57–89. https://doi.org/10.1007/0-306-48145-6_5
Koh, S. E.; Risko, C.; Silva Filho, D. A.; Kwon, O.; Facchetti, A.; Brédas, J.-L.; Marks, T. J.; Ratner, M. A. Modeling Electron and Hole Transport in Fluoroarene‐Oligothiopene Semiconductors: Investigation of Geometric and Electronic Structure Properties. Adv. Funct. Mater. 2008, 18 (2), 332–340. https://doi.org/10.1002/adfm.200700713
Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J.-F.; Leclerc, M. Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Adv. Funct. Mater. 2006, 16 (13), 1694–1704. https://doi.org/10.1002/adfm.200600171
Liu, X.; Rand, B. P.; Forrest, S. R. Engineering Charge-Transfer States for Efficient, Low-Energy-Loss Organic Photovoltaics. Trends Chem. 2019, 1 (9), 815–829. https://doi.org/10.1016/j.trechm.2019.08.001
Marcus, R. A. Relation between charge transfer absorption and fluorescence spectra and the inverted region. J. Phys. Chem. 1989, 93 (8), 3078–3086. https://doi.org/10.1021/j100345a040
Muth, M.-A.; Mitchell, W.; Tierney, S.; Lada, T. A.; Xue, X.; Richter, H.; Carrasco-Orozco, M.; Thelakkat, M. Influence of charge carrier mobility and morphology on solar cell parameters in devices of mono-and bis-fullerene adducts. J. Nanotechnol. 2013, 24 (48), 484001. https://doi.org/10.1088/0957-4484/24/48/484001
Ochterski, J. W.; Petersson, G. A.; Montgomery Junior, J. A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 1996, 104 (7), 2598. https://doi.org/10.1063/1.470985
Oukachmih, M. Université Toulouse-Paul Sabatier, France. 2003. (Doctoral Theses).
Petersson, G. A.; Al‐Laham, M. A. A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms. J. Chem. Phys. 1991, 94 (9), 6081 https://doi.org/10.1063/1.460447
Provencher, F. Dynamique de séparation de charges à l’hétérojonction de semi-conducteurs organiques. Ph.D. Thesis, University of Montreal, 2014. http://hdl.handle.net/1866/10654 (accessed 2022-02-24)
Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6‐31G* basis set for third‐row atoms. J. Comput. Chem. 2001, 22 (9), 976–984. https://doi.org/10.1002/jcc.1058
Rodríguez-Monge, L.; Larsson, S. Conductivity in polyacetylene. I. Ab initio calculation of charge localization, bond distances, and reorganization energy in model molecules. J. Chem. Phys. 1995, 102 (18), 7106. https://doi.org/10.1063/1.469104
Schwenn, P. E.; Burn, P. L.; Powell, B. J. Calculation of solid state molecular ionisation energies and electron affinities for organic semiconductors. Org. Electron. 2011, 12 (2), 394–403. https://doi.org/10.1016/j.orgel.2010.11.025
Sun, F.; Jin, R. DFT and TD-DFT study on the optical and electronic properties of derivatives of 1, 4-bis (2-substituted-1, 3, 4-oxadiazole) benzene. Arab. J. Chem. 2017, 10 (Suppl. 2), S2988–S2993. https://doi.org/10.1016/j.arabjc.2013.11.037