Secondary metabolites and pharmacological potential of Thuja orientalis and T. occidentalis: A short review
Main Article Content
Abstract
Species from Thuja genus (Cupressaceae) are found in Brazil, North America and Asia. In the traditional medicine, these plants are used in the treatment of cough, skin allergies, and asthma. In Brazil, Thuja species are also used in the ornamentation of urban areas. Different parts of these plants displayed insecticidal, antitumor, and antioxidant activities. The essential oil of the leaves from Thuja spp. are constituted by monoterpenes and sesquiterpenes. The main substances found in the extracts of these species are flavonoids, which display relevant biological activities. This brief review shows recent phytochemical studies involving T. orientalis and T. occidentalis, as well as 40 constituents isolated from these species. The existing pharmacological potential justifies the growing scientific interest in this genus.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Aguilar-Velázquez, G.; Espinosa, D.; Ordaz-Pichardo, C. Effects of Homeopathic Dilutions of Echinacea angustifolia and Thuja occidentalis on Cervical Cancer Cells. Homeopathy. 2018, 107 (S1), 55–78. https://doi.org/10.1055/s-0037-1608960
Ahmad, F.; Safuan, S. Assessing the Effectiveness of Plant Extracts in Polycystic Ovarian Syndrome: A Systematic Review. Mal. J. Med. Health Sci. 2019, 15 (2), 120–129.
Alamdari, D. H.; Aghasizadeh-Sharbaf, M.; Mohadjerani, M.; Ferns, G. A.; Avan, A. Prooxidant-Antioxidant Balance and Antioxidant Properties of Thuja orientalis L: A Potential Therapeutic Approach for Diabetes Mellitus. Curr. Mol. Pharmacol. 2018, 11 (2), 109–112. https://doi.org/10.2174/1874467210666170404112211
Al-Azawi, M. T.; Hadi, S. M.; Mohammed, C. H. Synthesis of silica nanoparticles via green approach by using hot aqueous extract of Thuja orientalis leaf and their effect on biofilm formation. Iraqi J. Agric. Sci. 2019, 50 (Special Issue), 245–255. https://doi.org/10.36103/ijas.v50iSpecial.196
Arya, M. C.; Bafila, P. S.; Mishra, D.; Negi, K.; Kumar, R.; Bughani, A. Adsorptive removal of Remazol Brilliant Blue R dye from its aqueous solution by activated charcoal of Thuja orientalis leaves: an eco-friendly approach. SN Appl. Sci. 2020, 2 (2), 265. https://doi.org/10.1007/s42452-020-2063-2
Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021, 20 (3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
Bae, S.; Han, J. W.; Dang, Q. L.; Kim, H.; Choi, G. J. Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. Plants. 2021, 10 (8), 1496. https://doi.org/10.3390/plants10081496
Bagot, J.-L. How to prescribe Thuja occidentalis in oncology? Analysis of the literature, study of practices and personal experience. Rev. Homeopath. 2020, 11 (3), e26–e32. https://doi.org/10.1016/j.revhom.2020.07.001
Bai, L.; Li, X.; He, L.; Zheng, Y.; Lu, H.; Li, J.; Zhong, L.; Tong, R. Antidiabetic Potential of Flavonoids from Traditional Chinese medicine: A Review. Am. J. Chinese Med. 2019, 47 (5), 933–957. https://doi.org/10.1142/S0192415X19500496
Bai, L.; Wang, W.; Hua, J.; Guo, Z.; Luo, S. Defensive functions of volatile organic compounds and essential oils from northern white-cedar in China. BMC Plant Biol. 2020, 20 (1), 500. https://doi.org/10.1186/s12870-020-02716-6
Bandyopadhyay, A.; Banerjee, P. P.; Shaw, P.; Mondal, M. K.; Das, V. K.; Chowdhury, P.; Karak, N.; Bhattacharya, S.; Chattopadhyay, A. Cytotoxic and Mutagenic Effects of Thuja occidentalis Mediated Silver Nanoparticles on Human Peripheral Blood Lymphocytes. Mater. Focus. 2017, 6 (3), 290–296. https://doi.org/10.1166/mat.2017.1405
Bellili, S.; Aouadhi, C.; Dhifi, W.; Ghazghazi, H.; Jlassi, C.; Sadaka, C.; El Beyrouthy, M.; Maaroufi, A.; Cherif, A.; Mnif, W. The Influence of Organs on Biochemical Properties of Tunisian Thuja occidentalis Essential Oils. Symmetry. 2018, 10 (11), 649. https://doi.org/10.3390/sym10110649
Bhardwaj, K.; Silva, A. S.; Atanassova, M.; Sharma, R.; Nepovimova, E.; Musilek, K.; Sharma, R.; Alghuthaymi, M. A.; Dhanjal, D. S.; Nicoletti, M.; Sharma, B.; Upadhyay, N. K.; Cruz-Martins, N.; Bhardwaj, P.; Kuča, K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules. 2021, 26 (10), 3005. https://doi.org/10.3390/molecules26103005
Breeta, R. E.; Jesubatham, P. D.; Grace, V. M. B.; Viswanathan, S.; Srividya, S. Non-toxic and non-teratogenic extract of Thuja orientalis L. inhibited angiogenesis in zebra fish and suppressed the growth of human lung cancer cell line. Biomed. Pharmacother. 2018, 106, 699–706. https://doi.org/10.1016/j.biopha.2018.07.010
Burange, P. J.; Tawar, M. G.; Bairagi, R. A.; Malviya, V. R.; Sahu, V. K.; Shewatkar, S. N.; Sawarkar, R. A.; Mamurkar, R. R. Synthesis of silver nanoparticles by using Aloe vera and Thuja orientalis leaves extract and their biological activity: a comprehensive review. Bull. Nat. Res. Centre. 2021, 45 (1), 181. https://doi.org/10.1186/s42269-021-00639-2
Caruntu, S.; Ciceu, A.; Olah, N. K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, phytochemistry and biological activity. Molecules. 2020, 25 (22), 5416. https://doi.org/10.3390/molecules25225416
Chakraborty, S.; Afaq, N.; Singh, N.; Majumdar, S. Antimicrobial activity of Cannabis sativa, Thuja orientalis and Psidium guajava leaf extracts against methicillin-resistant Staphylococcus aureus. J. Integr. Med. 2018, 16 (5), 350–357. https://doi.org/10.1016/j.joim.2018.07.005
Darwish, R. S.; Hammoda, H. M.; Ghareeb, D. A.; Abdelhamid, A. S. A.; Harraz, F. M.; Shawky, E. Seasonal dynamics of the phenolic constituents of the cones and leaves of oriental Thuja (Platycladus orientalis L.) reveal their anti-inflammatory biomarkers. RSC Adv. 2021, 11 (40), 24624–24635. https://doi.org/10.1039/D1RA01681D
Devi, A.; Das, V. K.; Deka, D. A green approach for enhancing oxidation stability including long storage periods of biodiesel via Thuja oreantalis L. as an antioxidant additive. Fuel. 2019, 253, 1264–1273. https://doi.org/10.1016/j.fuel.2019.05.127
Dong, Y.; Hu, X.-M.; Cao, Y.-F.; Wang, Y.-C.; Li, L.-Z.; Lu, J.-Y.; Li, X.-X. Thuja occidentalis mediated AuNPs as wound dressing agents for abdominal wound healing in nursing care after surgery. Appl. Nanosci. 2020, 10 (9), 3577–3584. https://doi.org/10.1007/s13204-020-01459-y
Elsharkawy, E. R.; Aljohar, H.; Donia, A. E. R. M. Comparative study of antioxidant and Saudi Arabia. J. Pharm. Res. Int. 2017, 15 (5), 1–9. https://doi.org/10.9734/BJPR/2017/32387
García-Hernández, L.; Flores-Saldivar, J. A.; Ortega, P. R.; Guerrero, M. U. F. Synthesis of colloidal CuNPs using the extract of Thuja orientalis. ECS Trans. 2021, 101 (1), 131. https://doi.org/10.1149/10101.0131ecst
Gour, A.; Jain, N. K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47 (1), 844–851. https://doi.org/10.1080/21691401.2019.1577878
Gupta, M.; Sharma, K. A Review of Phyto-Chemical Constituent and Pharmacological Activity of Thuja Species. Int. J. Pharm. Res. Appl. 2021, 6 (1), 85–95.
Jain, N.; Sharma, M. Ethanobotany, Phytochemical and Pharmacological Aspects of Thuja orientalis: A Review. Int. J. Pure App. Biosci. 2017, 5 (4), 73–83. https://doi.org/10.18782/2320-7051.2976
Jiang, L.; George, S. C. Biomarker signatures of Upper Cretaceous Latrobe Group hydrocarbon source rocks, Gippsland Basin, Australia: distribution and palaeoenvironment significance of aliphatic hydrocarbons. Int. J. Coal Geol. 2018, 196, 29–42. https://doi.org/10.1016/j.coal.2018.06.025
Kumar, V.; Arora, K. Trends in nano-inspired biosensors for plants. Mat. Sci. Energy Technol. 2020, 3, 255–273. https://doi.org/10.1016/j.mset.2019.10.004
Kumar, P.; Andersson, G.; Subhedar, K. M.; Dhami, H. S.; Gupta, G.; Mukhopadhyay, A. K.; Joshi, R. P. Utilization of green reductant Thuja orientalis for reduction of GO to RGO. Ceramics Int. 2021, 47 (10 – Part B), 14862–14878. https://doi.org/10.1016/j.ceramint.2020.08.063
Li, R. W.; Smith, P. N.; Lin, G. D. Variation of biomolecules in plant species. In Herbal Biomolecules in Healthcare Applications. Academic Press, 2022; pp 81–99. https://doi.org/10.1016/B978-0-323-85852-6.00028-7
Moawad, A.; Amin, E. Comparative antioxidant activity and volatile oil composition of leaves and fruits of Thuja orientalis Growing in Egypt. Wal. J. Sci. Technol. (WJST) 2019, 16 (11), 823–830. https://doi.org/10.48048/wjst.2019.3269
Nakano, D.; Ishitsuka, K.; Ishihara, M.; Tsuchihashi, R.; Okawa, M.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates from plants against Human adult T-Cell Leukemia/Lymphoma (VII): active principles from Thuja occidentalis L. Molecules. 2021, 26 (24), 7619. https://doi.org/10.3390/molecules26247619
Park, J. S.; Ko, K.; Kim, S.-H.; Lee, J. K.; Park, J.-S.; Park, K.; Kim, M. R.; Kang, K.; Oh, D.-C.; Kim, S. Y.; Yumnam, S.; Kwon, H. C.; Shin, J. Tropolone-Bearing Sesquiterpenes from Juniperus chinensis: structures, photochemistry and bioactivity. J. Nat. Prod. 2021, 84 (7), 2020–2027. https://doi.org/10.1021/acs.jnatprod.1c00321
Parveen, S.; Das, S. Homeopathic treatment in patients with polycystic ovarian syndrome: a case series. Homeopathy. 2021, 110 (3), 186–193. https://doi.org/10.1055/s-0041-1725039
Pereira, R.; Lima, F. J.; Simbras, F. M.; Bittar, S. M. B.; Kellner, A. W. A.; Saraiva, A. Á. F.; Bantim, R. A. M.; Sayão, J. M.; Oliveira, G. R. Biomarker signatures of Cretaceous Gondwana amber from Ipubi Formation (Araripe Basin, Brazil) and their palaeobotanical significance. J. S. Am. Earth Sci. 2020, 98, 102413. https://doi.org/10.1016/j.jsames.2019.102413
Pradhan, P.; Sarangdevot, Y. S. Evaluation of antidiabetic activity of aerial parts of Thuja occidentalis. Plant Arch. 2020, 20 (Suppl. 1), 957–962.
Pradhan, P.; Sarangdevot, Y. S; Vyas, B. Quantitative estimation of total phenols and flavonoids content in Thuja orientalis. J. Pharmacogn. Phytochem. 2021, 10 (1), 687–689.
Pudełek, M.; Catapano, J.; Kochanowski, P.; Mrowiec, K.; Janik-Olchawa, N.; Czyż, J.; Ryszawy, D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia. 2019, 134, 172–181. https://doi.org/10.1016/j.fitote.2019.02.020
Rehman, R.; Zubair, M.; Bano, A.; Hewitson, P.; Ignatova, S. Isolation of industrially valuable α-Cedrol from essential oil of Platycladus orientalis (Thuja orientalis) leaves using linear gradient counter current chromatography. Ind. Crops Prod. 2022, 176, 114297. https://doi.org/10.1016/j.indcrop.2021.114297
Sanei-Dehkordi, A.; Gholami, S.; Abai, M. R.; Sedaghat, M. M. Essential oil composition and larvicidal evaluation of Platycladus orientalis against two mosquito vectors, Anopheles stephensi and Culex pipiens. J. Arthropod Borne Dis. 2018, 12 (2), 101–107. https://doi.org/10.18502/jad.v12i2.35
Seo, K.-S.; Lee, B.; Yun, K. W. Chemical composition and antibacterial activity of essential oils extracted from wild and planted Thuja orientalis leaves in Korea. J. Essent. Oil-Bear. Plants. 2019, 22 (5), 1407–1415. https://doi.org/10.1080/0972060X.2019.1689177
Silva, I. S.; Nicolau, L. A. D.; Sousa, F. B. M.; Araújo, S.; Oliveira, A. P.; Araújo, T. S. L.; Souza, L. K. M.; Martins, C. S.; Aquino, P. E. A.; Carvalho, L. L.; Silva, R. O.; Rolim-Neto, P. J.; Medeiros, J. V. R. Evaluation of anti-inflammatory potential of aqueous extract and polysaccharide fraction of Thuja occidentalis Linn. in mice. Int. J. Biol. Macromol. 2017, 105 (Part 1), 1105–1116. https://doi.org/10.1016/j.ijbiomac.2017.07.142
Silva, P. E. S.; Furtado, C. O.; Damasceno, C. A. Utilização de plantas medicinais e medicamentos fitoterápicos no Sistema Público de Saúde Brasileiro nos últimos 15 anos: uma revisão integrativa. Braz. J. Dev. 2021, 7 (12), 116235-116255. https://doi.org/10.34117/bjdv7n12-402
Singh, V.; Shukla, S.; Singh, A. The principal factors responsible for biodiversity loss. Open J. Plant Sci. 2021, 6 (1), 11–14. https://doi.org/10.17352/ojps.000026
Srivastava, A.; Jit, B. P.; Dash, R.; Srivastava, R.; Srivastava S. Thuja Occidentalis: an unexplored phytomedicine with therapeutic applications. Comb. Chem. High Throughput Screen. 2022, 25, 1537–1548. https://doi.org/10.2174/1386207325666220308153732
Stan, M. S.; Voicu, S. N.; Caruntu, S.; Nica, I. C.; Olah, N.-K.; Burtescu, R.; Balta, C.; Rosu, M.; Herman, H.; Hermenean, A.; Dinischiotu, A. Antioxidant and anti-inflammatory properties of a Thuja occidentalis Mother tincture for the treatment of ulcerative colitis. Antioxidants. 2019, 8 (9), 416–435. https://doi.org/10.3390/antiox8090416
Tyagi, C. K.; Porwal, P.; Mishra, N.; Sharma, A.; Chandekar, A.; Punekar, R.; Punniyakoyi, V. T.; Kumar, A.; Anghore, D. Antidiabetic activity of the methanolic extracts of Thuja occidentalis Twings in Alloxan-induced Rats. Curr. Tradit. Med. 2019, 5 (2), 138–143. https://doi.org/10.2174/2215083805666190312153743
Viezzer, J.; Biondi, D.; Martini, A.; Grise, M. M. A vegetação no paisagismo das praças de Curitiba-PR. Cienc. Florest. 2018, 28 (1), 369–383. https://doi.org/10.5902/1980509831608
Yatoo, M. I.; Gopalakrishnan, A.; Saxena, A.; Parray, O. R.; Tufani, N. A.; Chakraborty, S.; Tiwari R.; Dhama, K.; Iqbal, H. M. N. Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - a review. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12 (1), 39–58. https://doi.org/10.2174/1872213X12666180115153635