Experimental, DFT, molecular docking and in silico ADMET studies of cadmium-benzenetricarboxylates

Main Article Content

Enyi Inah Bassey
Terkumbur Emmanuel Gber
Edison Esther Ekpenyong
Henry Okon Edet
Innocent Benjamin
Imabasi Tom Ita

Abstract

The structure of the polymer [Cd(BTC)(H2O)2]n was identified by X-ray single-crystal crystallography. The complex’s stability and overall reactivity were examined at the B3LYP/6-311++G (d,p) level of theory whereas the lighter elements (H, C, and O) were studied using the LanL2DZ basis set. The electron distribution in the complex’s highest occupied molecular orbital is solely concentrated in a small area, with no electrons distributed over the cadmium. Consequently, the electrons in the complex’s lowest unoccupied molecular orbital (LUMO) were dispersed equally. The Cd atom is partially obscured by charge delocalization in the LUMO. The natural bond orbital analysis supports the result for reactivity studies. The rate of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the complex evaluated by molecular docking in a bid allowed comprehend the biological applicability. The [Cd(BTC)(H2O)2]n exhibited excellent binding affinity with proteins 1D7U and 2XCS, while by ADMET it is suggested that cytotoxicity and carcinogenicity were inactive. It is clearly shown that the complex has strong biological uses, notably for the treatment of microbial diseases.

Metrics

Metrics Loading ...

Article Details

How to Cite
Bassey, E. I., Gber, T. E., Ekpenyong, E. E., Edet, H. O., Benjamin, I., & Ita, I. T. (2022). Experimental, DFT, molecular docking and in silico ADMET studies of cadmium-benzenetricarboxylates. Eclética Química, 47(4), 37–50. https://doi.org/10.26850/1678-4618eqj.v47.4.2022.p37-50
Section
Original articles

References

Agwupuye, J. A.; Louis, H.; Unimuke, T. O.; David, P.; Ubana, E. I.; Moshood, Y. L. Electronic structure investigation of the stability, reactivity, NBO analysis, thermodynamics, and the nature of the interactions in methyl-substituted imidazolium-based ionic liquids. J. Mol. Liq. 2021a, 337, 116458. https://doi.org/10.1016/j.molliq.2021.116458

Agwupuye, J. A.; Neji, P. A.; Louis, H.; Odey, J. O.; Unimuke, T. O.; Bisiong, E. A.; Eno. E. A.; Utsu, P. M.; Ntui, T. N. Investigation on electronic structure, vibrational spectra, NBO analysis, and molecular docking studies of aflatoxins and selected emerging mycotoxins against wild-type androgen receptor. Heliyon. 2021b, 7 (7), E07544. https://doi.org/10.1016/j.heliyon.2021.e07544

Andrade, E. L.; Bento, A. F.; Cavalli, J.; Oliveira, S. K.; Schwanke, R. C.; Siqueira, J. M.; Freitas, C. S.; Marcon, R.; Calixto, J. B. Non-clinical studies in the process of new drug development-Part II: Good laboratory practice, metabolism, pharmacokinetics, safety and dose translation to clinical studies. Braz. J. Med. Biol. Res. 2016, 49 (12), e5646. https://doi.org/10.1590/1414-431x20165646

Balaban, N. Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D. I.; Brynildsen, M. P.; Bumann, D.; Camilli, A.; Collins, J. J.; Dehio, C.; Fortune, S.; Ghigo, J.-M.; Hardt, W.-D.; Harms, A.; Heinemann, M.; Hung, D. T.; Jenal, U.; Levin, B. R.; Michiels, J.; Storz, G.; Tan, M.-W.; Tenson, T.; Van Melderen, L.; Zinkernagel, A. Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology. 2019, 17 (7), 441–448. https://doi.org/10.1038/s41579-019-0196-3

Bassey, V. M.; Apebende, C. G.; Idante, P. S.; Louis, H.; Emori, W.; Cheng, C.-R.; Agwupuye, J. A.; Unimuke, T. O.; Wei, K.; Asogwa, F. C. Vibrational Characterization and Molecular Electronic Investigations of 2-acetyl-5-methylfuran using FT-IR, FT-Raman, UV–VIS, NMR, and DFT Methods. J. Fluoresc. 2022, 32 (3), 1005–1017. https://doi.org/10.1007/s10895-022-02903-8

Berman, H. M.; Battistuz, T.; Bhat, T. N.; Bluhm, W. F.; Bourne, P. E.; Burkhardt, K.; Feng, Z.; Gilliland, G. L.; Iype, L.; Jain, S.; Fang, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissing, H.; Westbrook, D.; Zardecki, C. The Protein Data Bank. Acta Cryst. 2002, D58 (6), 899–907. https://doi.org/10.1107/S0907444902003451

Bisong, E. A.; Louis, H.; Unimuke, T. O.; Odey, J. O.; Ubana, E. I.; Edim, M. M.; Edim, M. M.; Tizhe, F. T.; Agwupuye, J. A.; Utsu, P. M. Vibrational, electronic, spectroscopic properties, and NBO analysis of p-xylene, 3, 6-difluoro-p-xylene, 3, 6-dichloro-p-xylene and 3, 6-dibromo-pxylene: DFT study. Heliyon. 2020, 6 (12), E05783. https://doi.org/10.1016/j.heliyon.2020.e05783

Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer. Pharmaceutics. 2020, 12 (3), 232. https://doi.org/10.3390/pharmaceutics12030232

Chuhadiya, S.; Suthar, H. D.; Patel, S. L.; Dhaka, M. S. Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord. Chem. Rev. 2021, 446, 214115. https://doi.org/10.1016/j.ccr.2021.214115

Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7 (1), 42717. https://doi.org/10.1038/srep42717

Dennington, R.; Keith, T. A.; Millam, J. M. (2016). Gauss View 6.0. 16. Semichem Inc.: Missão Shawnee, KS, EUA. HyperChem, T. HyperChem 8.07, Programa Profissional HyperChem. Gainesville, Hipercubo. 2001.

Deshpande, N.; Addess, K. J.; Bluhm, W. F.; Merino-Ott, J. C.; Townsend-Merino, W.; Zhang, Q.; Knezevich, C.; Xie, L.; Chen, L.; Feng, Z.; Green, R. K.; Flippen-Anderson, J. L.; Westbrook, J.; Berman, H. M.; Bourne, P. E. The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 2005, 33 (Suppl 1), D233–D237. https://doi.org/10.1093/nar/gki057

El-Gammal, O. A.; Rakha, T. H.; Metwally, H. M.; El-Reash, G. M. A. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn (II), Cd (II) and Hg (II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 127, 144–156. https://doi.org/10.1016/j.saa.2014.02.008

Emori, W.; Louis, H.; Adalikwu, S. A.; Timothy, R. A.; Cheng, C.-R.; Gber, T. E.; Agwamba, E. C.; Owen, A. E.; Ling, L.; Offiong, O. E.; Adeyinka, A. S. Molecular Modeling of the Spectroscopic, Structural, and Bioactive Potential of Tetrahydropalmatine: Insight from Experimental and Theoretical Approach. Polycycl. Aromat. Compd. 2022, 1–18. https://doi.org/10.1080/10406638.2022.2110908

Eno, E. A.; Louis, H.; Unimuke, T. O.; Gber, T. E.; Mbonu, I. J.; Ndubisi, C. J.; Adalikwu, S. A. Reactivity, stability, and thermodynamics of para-methylpyridinium-based ionic liquids: Insight from DFT, NCI, and QTAIM. Journal of Ionic Liquids. 2022, 2 (1), 100030. https://doi.org/10.1016/j.jil.2022.100030

Frisch, M. J.; Trucks. G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. X.; Caricato, Li. M.; Marenich, A. V.; Bloino, J.; Janesko.; B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Yong, D.; Ding, F.; Lipparini, F. Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasagawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O. Nakai, H.; Vreven, T. Throssell, K.; Montgomery, J. A.; Peralta, Jr, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normard, J.; Raghavachari, K.; Rendell, A. P. Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W. Martin, R. L.; Morokuma, K. Farkas, O.; Foresman, J. B.; and Fox, D. J.; Gaussian, Inc., Wallingford CT, 2016.

Gber, T. E.; Louis, H.; Owen, A. E.; Etinwa, B. E.; Benjamin, I.; Asogwa, F. C.; Orosun, M. M.; Eno, E. A. Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS2 for NH3 gas detection. RSC Advances. 2022, 12 (40), 25992–26010. https://doi.org/10.1039/D2RA04028J

Gupta, A.; Gupta, R.; Singh, R. L. Microbes and Environment. In Principles and Applications of Environmental Biotechnology for a Sustainable Future. Springer, 2017; pp 43–48. https://doi.org/10.1007/978-981-10-1866-4_3

Hamdani, H. E.; Amane, M. E. Preparation, spectral, antimicrobial properties and anticancer molecular docking studies of new metal complexes [M (caffeine)4](PF6)2; M= Fe (II), Co (II), Mn (II), Cd (II), Zn (II), Cu (II), Ni (II). J. Mol. Struct. 2019, 1184, 262–270. https://doi.org/10.1016/j.molstruc.2019.02.049

Huxford, R. C.; Della Rocca, J.; Lin, W. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14 (2), 262–268. https://doi.org/10.1016/j.cbpa.2009.12.012

Isravel, A. D.; Jeyaraj, J. K.; Thangasamy, S.; John, W. J. DFT, NBO, HOMO-LUMO, NCI, stability, Fukui function and hole–Electron analyses of tolcapone. Comput. Theor. Chem. 2021, 1202, 113296. https://doi.org/10.1016/j.comptc.2021.113296

Izuchukwu, U. D.; Asogwa, F. C.; Louis, H.; Uchenna, E. F.; Gber, T. E.; Chinasa, U. M.; Chinedum, N. J.; Eze, B. O.; Adeyinka, A. S.; Chris, O. U. Synthesis, vibrational analysis, molecular property investigation, and molecular docking of new benzenesulphonamide-based carboxamide derivatives against Plasmodium falciparum. Journal of Molecular Structure. 2022, 1269, 133796. https://doi.org/10.1016/j.molstruc.2022.133796

Jia, C.-Y.; Li, J.-Y.; Hao, G.-F.; Yang, G.-F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov. Today. 2020, 25 (1), 248–258. https://doi.org/10.1016/j.drudis.2019.10.014

Kar, S.; Leszczynski, J. Open access in silico tools to predict the ADMET profiling of drug candidates. Expert Opin. Drug Discov. 2020, 15 (12), 1473–1487. https://doi.org/10.1080/17460441.2020.1798926

Kavimani, M.; Balachandran, V.; Narayana, B.; Vanasundari, K.; Revathi, B. Topological analysis (BCP) of vibrational spectroscopic studies, docking, RDG, DSSC, Fukui functions and chemical reactivity of 2-methylphenylacetic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 190, 47–60. https://doi.org/10.1016/j.saa.2017.09.005

Khan, E.; Khalid, M.; Gul, Z.; Shahzad, A.; Tahir, M. N.; Asif, H. M.; Asim, S.; Braga, A. C. Molecular structure of 1, 4-bis (substituted-carbonyl) benzene: a combined experimental and theoretical approach. J. Mol. Struct. 2020, 1205, 127633. https://doi.org/10.1016/j.molstruc.2019.127633

Kiran, G.; Karthik, L.; Devi, M. S. S.; Sathiyarajeswaran, P.; Kanakavalli, K.; Kumar, K. M.; Kumar, D. R. In silico computational screening of Kabasura Kudineer - Official Siddha Formulation and JACOM against SARS-CoV-2 spike protein. J. Ayurveda Integr. Med. 2020, 13 (1), 100324. https://doi.org/10.1016/j.jaim.2020.05.009

Konakanchi, R.; Haribabu, J.; Prashanth, J.; Nishtala, V. B.; Mallela, R.; Manchala, S.; Gandamalla, D.; Karvembu, R.; Reddy, B. V.; Yellu, N. R.; Kotha, L. R. Synthesis, structural, Biological Evaluation, Molecular Docking and DFT Studies of Co (II), Ni (II), Cu (II), Zn (II), Cd (II) and Hg (II) Complexes bearing Heterocyclic Thiosemicarbazone ligand. Appl. Organomet. Chem. 2018, 32 (8), e4415. https://doi.org/10.1002/aoc.4415

Kumar, P.; Deep, A.; Kim, K.-H. Metal organic frameworks for sensing applications. TrAC - Trends Anal. Chem. 2015, 73, 39–53. https://doi.org/10.1016/j.trac.2015.04.009

Lavé, T.; Parrott, N.; Grimm, H. P.; Fleury, A.; Reddy, M. Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica. 2007, 37 (10–11), 1295–1310. https://doi.org/10.1080/00498250701534885

Lawson, H. D.; Walton, S. P.; Chan, C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces. 2021, 13 (6), 7004–7020. https://doi.org/10.1021/acsami.1c01089

Li, H.; Li, L.; Lin, R.-B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. 2019, 1 (1), 100006. https://doi.org/10.1016/j.enchem.2019.100006

Louis, H.; Gber, T. E.; Asogwa, F. C.; Eno, E. A.; Unimuke, T. O.; Bassey, V. M.; Ita, B. I. Understanding the lithiation mechanisms of pyrenetetrone-based carbonyl compound as cathode material for lithium-ion battery: Insight from first principle density functional theory. Mater. Chem. Phys. 2022, 278, 125518. https://doi.org/10.1016/j.matchemphys.2021.125518

Mason, H. E.; Li, W.; Carpenter, M. A.; Hamilton, M. L.; Howard, J. A.; Sparkes, H. A. Structural and spectroscopic characterisation of the spin crossover in [Fe(abpt)2(NCS)2] polymorph A. New Journal of Chemistry. 2016, 40 (3), 2466–2478. https://doi.org/10.1039/C5NJ02359A

Odonkor, S. T.; Addo, K. K. Bacteria Resistance to Antibiotics: Recent Trends and Challenges. Int. J. Biol. Med. Res. 2011, 2 (4), 1204–1210.

Pastore, V. J.; Cook, T. R.; Rzayev, J. Polymer–MOF Hybrid Composites with High Porosity and Stability Through Surface-Selective Ligand Exchange. Chem. Mater. 2018, 30 (23), 8639–8649. https://doi.org/10.1021/acs.chemmater.8b03881

Purssell, E. Antimicrobials. In Understanding Pharmacology in Nursing Practice. Springer, 2020; pp 147–165. https://doi.org/10.1007/978-3-030-32004-1_6

Reygaert, W. C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4 (3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Seeliger, D.; Groot, B. L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided. Mol. Des. 2010, 24 (5), 417–422. https://doi.org/10.1007/s10822-010-9352-6

Sevvana, M.; Ruf, M.; Usón, I.; Sheldrick, G. M.; Herbst-Irmer, R. Non-merohedral twinning: from minerals to proteins. Acta Cryst. 2019, D75 (12), 1040–1050. https://doi.org/10.1107/S2059798319010179

Sharbidre, A.; Dhage, P.; Duggal, H.; Meshram, R. In silico Investigation of Tridax procumbens Phyto-Constituents Against SARS-CoV-2 Infection. Biointerface Res. Appl. Chem. 2021, 11 (4), 12120–12148. https://doi.org/10.33263/BRIAC114.1212012148

Shemchuk, O.; Song, L.; Tumanov, N.; Wouters, J.; Braga, D.; Grepioni, F.; Leyssens, T. Chiral Resolution of RS-Oxiracetam upon Cocrystallization with Pharmaceutically Acceptable Inorganic Salts. Cryst. Growth Des. 2020, 20 (4), 2602–2607. https://doi.org/10.1021/acs.cgd.9b01725

Sun, C.-Y.; Qin, C.; Wang, X.-L.; Su, Z.-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 2013, 10 (1), 89–101. https://doi.org/10.1517/17425247.2013.741583

Takaya, D.; Niwa, H.; Mikuni, J.; Nakamura, K.; Handa, N.; Tanaka, A.; Yokoyama, S.; Honma, T. Protein ligand interaction analysis against new CaMKK2 inhibitors by use of X-ray crystallography and the fragment molecular orbital (FMO) method. J. Mol. Graph. 2020, 99, 107599. https://doi.org/10.1016/j.jmgm.2020.107599

Tice, C. M. Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag. Sci. 2001, 57 (1), 3–16. https://doi.org/10.1002/1526-4998(200101)57:1<3::AID-PS269>3.0.CO;2-6

Trott, O.; Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31 (2), 455–461. https://doi.org/10.1002/jcc.21334

Udoikono, A. D.; Louis, H.; Eno, E. A.; Agwamba, E. C.; Unimuke, T. O.; Igbalagh, A. T.; Odey, J. O.; Adeyinka, A. S. Reactive azo compounds as a potential chemotherapy drugs in the treatment of malignant glioblastoma (GBM): Experimental and theoretical studies. J. Photochem. Photobiol. 2022, 10, 100116. https://doi.org/10.1016/j.jpap.2022.100116

Unimuke, T. O.; Louis H.; Eno, E. A.; Agwamba, E. C.; Adeyinka, S. A. Meta-hybrid density functional prediction of the reactivity, stability, and IGM of azepane, oxepane, thiepane, and halogenated cycloheptane. ACS Omega. 2022, 7 (16), 13704−13720. https://doi.org/10.1021/acsomega.1c07361

Vikrant, K.; Kumar, V.; Ok, Y. S.; Kim, K.-H.; Deep, A. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. TrAC - Trends Anal. Chem. 2018, 105, 263–281. https://doi.org/10.1016/j.trac.2018.05.013

Wu, J. C.; Chattree, G.; Ren, P. Automation of AMOEBA polarizable force field parameterization for small molecules. Theor. Chem. Acc. 2012, 131 (3), 1138. https://doi.org/10.1007/s00214-012-1138-6