UV-protective compound-containing smart textiles: A brief overview
Main Article Content
Abstract
Excessive exposure to solar ultraviolet (UV) radiation causes human health damages, such as sunburns and skin cancer. Thus, the use of sun-protective clothing is a simple, easy, and practical method for UV protection of the human organism. In this perspective, incorporation, coating, and anchorage of UV-protective compounds in textile fibers have been employed to enhance the UV-blocking ability and/or promote functional finishings to smart fabrics. This review describes recent research efforts on the development of UV-protective compound-containing smart fabrics highlighting the UV-blocking properties and multifunctional activities. Different compound class examples and discussions are presented in order to contribute to new insights into sun-protective clothing and future applications of multifunctional textiles.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers PIBIC 1127-1/2020 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 317610/2021
References
AATCC 124. Appearance of durable press fabrics after repeated home laundering. American Association of Textile Chemists and Colorists, 1996. https://law.resource.org/pub/us/cfr/ibr/001/aatcc.tm.124.1996.pdf (accessed 2021-01-21).
AATCC 135. Dimensional change. American Association of Textile Chemists and Colorists, 2000. https://global.ihs.com/doc_detail.cfm?&item_s_key=00157760&item_key_date=991231&input_doc_number=&input_doc_title= (accessed 2021-01-21).
AATCC 61. Colorfastness to laundering, home and commercial: Accelerated. American Association of Textile Chemists and Colorists, 2006. https://global.ihs.com/doc_detail.cfm?&input_doc_number=&input_doc_title=&document_name=AATCC%2061&item_s_key=00255811&item_key_date=931231&origin=DSSC (accessed 2021-01-21).
AATCC M6. Standardization of home laundry test conditions. American Association of Textile Chemists and Colorists, 2010. https://global.ihs.com/doc_detail.cfm?&input_doc_number=&input_doc_title=&document_name=AATCC%20M6&item_s_key=00490394&item_key_date=891231&origin=DSSC (accessed 2021-01-21).
Abuçafy, M. P.; Manaia, E. B.; Kaminski, R. C. K.; Sarmento, V. H.; Chiavacci, L. A. Gel based sunscreen containing surface modified TiO2 obtained by sol-gel process: Proposal for a transparent UV inorganic filter. J. Nanomater. 2016, 2016, 8659240. https://doi.org/10.1155/2016/8659240
Ahmedova, A.; Mantareva, V.; Enchev, V.; Mitewa, M. 2-Acetylindan-1,3-dione and its Cu2+ and Zn2+ complexes as promising sunscreen agents. Int. J. Cosmet. Sci. 2002, 24 (2), 103–110. https://doi.org/10.1046/j.1467-2494.2002.00126.x
Alebeid, O. K.; Zhao, T. Review on: Developing UV protection for cotton fabric. J. Text. Inst. 2017, 108 (12), 2027–2039. https://doi.org/10.1080/00405000.2017.1311201
Antoniou, C.; Kosmadaki, M. G.; Stratigos, A. J.; Katsambas, A. D. Sunscreens – What’s important to know. J. Eur. Acad. Dermatology Venereol. 2008, 22 (9), 1110–1119. https://doi.org/10.1111/j.1468-3083.2007.02580.x
Ates, E. S.; Unalan, H. E. Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films. 2012, 520 (14), 4658–4661. https://doi.org/10.1016/j.tsf.2011.10.073
Babaahmadi, V.; Montazer, M. Reduced graphene oxide/SnO2 nanocomposite on PET surface: Synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 506, 507–513. https://doi.org/10.1016/j.colsurfa.2016.07.025
Bagde, A.; Mondal, A.; Singh, M. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review. Photodermatol. Photoimmunol. Photomed. 2018, 34 (1), 60–68. https://doi.org/10.1111/phpp.12368
Baker, L. A.; Marchetti, B.; Karsili, T. N. V.; Stavros, V. G.; Ashfold, M. N. R. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem. Soc. Rev. 2017, 46 (12), 3770–3791. https://doi.org/10.1039/C7CS00102A
Banerjee, S.; Dionysiou, D. D.; Pillai, S. C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. 2015, 176-177, 396–428. https://doi.org/10.1016/j.apcatb.2015.03.058
Bouazizi, N.; Abed, A.; Giraud, S.; El Achari, A.; Campagne, C.; Morshed, M. N.; Thoumire, O.; El Moznine, R.; Cherkaoui, O.; Vieillard, J.; Le Derf, F. Development of new composite fibers with excellent UV radiation protection. Phys. E Low-Dimensional Syst. Nanostructures. 2020, 118, 113905. https://doi.org/10.1016/j.physe.2019.113905
BS EN ISO 105-C06:2010. Textiles. Tests for colour fastness Colour fastness to domestic and commercial laundering. International Organization for Standardization, 2010. https://www.en-standard.eu/bs-en-iso-105-c06-2010-textiles-tests-for-colour-fastness-colour-fastness-to-domestic-and-commercial-laundering/?gclid=CjwKCAiAheacBhB8EiwAItVO2-iHqcpqedUsYMAtalfWKiCYHqy7ARvxEnufx5sl3ILFxrU9ntnrLBoCEtcQAvD_BwE (accessed 2021-01-21).
Çakir, B. A.; Budama, L.; Topel, Ö.; Hoda, N. Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 414, 132–139. https://doi.org/10.1016/j.colsurfa.2012.08.015
Chau, C.-F.; Wu, S.-H.; Yen, G.-C. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 2007, 18 (5), 269-280. https://doi.org/10.1016/j.tifs.2007.01.007
Chen, Z.; Yin, G. Suitability of a rare earth organic light conversion agent of Eu(III) complex to improve ultraviolet protection properties of cotton fabrics. Text. Res. J. 2010, 80 (18), 1982–1989. https://doi.org/10.1177/0040517510373631
Chen, D.; Mai, Z.; Liu, X.; Ye, D.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Xu, W. UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose. 2018, 25 (6), 3635–3647. https://doi.org/10.1007/s10570-018-1790-7
Chimeh, A. E.; Montazer, M. Fabrication of nano-TiO2/carbon nanotubes and nano-TiO2/nanocarbon black on alkali hydrolyzed polyester producing photoactive conductive fabric. J. Text. Inst. 2016, 107 (1), 95–106. https://doi.org/10.1080/00405000.2015.1012881
Costa, M. Nanotecnologia. O que é? Química Têxtil. 2012, 106, 3–11.
Čuk, N.; Šala, M.; Gorjanc, M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose. 2021, 28 (5), 3215–3233. https://doi.org/10.1007/s10570-021-03715-y
Curtzwiler, G. W.; Williams, E.B.; Maples, A. L.; Davis, N.W.; Bahns, T. L.; De Leon, J. E.; Vorst, K. L. Ultraviolet protection of recycled polyethylene terephthalate. J. Appl. Polym. Sci. 2017, 134 (32), 45181. https://doi.org/10.1002/app.45181
Dastjerdia, R.; Montazer, M.; Shahsavan, S. A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf. B. 2010, 81 (1), 32–41. https://doi.org/10.1016/j.colsurfb.2010.06.023
El-Naggar, M. E.; Shaarawy, S.; Hebeish, A. A. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydr. Polym. 2018, 181, 307–316. https://doi.org/10.1016/j.carbpol.2017.10.074
Emam, H. E.; Bechtold, T. Cotton fabrics with UV blocking properties through metal salts deposition. Appl. Surf. Sci. 2015, 357 (Part B), 1878–1889. https://doi.org/10.1016/j.apsusc.2015.09.095
Emam, H. E.; Abdelhameed, R. M. Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)-metal organic framework. ACS Appl. Mater. Interfaces. 2017, 9 (33), 28034–28045. https://doi.org/10.1021/acsami.7b07357
Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole frameworks. Ind. Eng. Chem. Res. 2020, 59 (23), 10931–10944. https://doi.org/10.1021/acs.iecr.0c01384
Fakin, D.; Veronovski, N.; Ojstršek, A.; Božič, M. Synthesis of TiO2-SiO2 colloid and its performance in reactive dyeing of cotton fabrics. Carbohydr. Polym. 2012, 88 (3), 992–1001. https://doi.org/10.1016/j.carbpol.2012.01.046
Faure, B.; Salazar-Alvarez, G.; Ahniyaz, A.; Villaluenga, I.; Berriozabal, G.; De Miguel, Y. R.; Bergström, L. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci. Technol. Adv. Mater. 2013, 14 (2), 023001. https://doi.org/10.1088/1468-6996/14/2/023001
Ferreira, A. J. S.; Ferreira, F. B. N.; Oliveira, F. R. Têxteis inteligentes: Uma breve revisão da literatura. REDIGE. 2014, 5 (1), 1–22.
Flor, J.; Davolos, M. R.; Correa, M. A. Protetores solares. Quim. Nova. 2007, 30 (1), 153–158. https://doi.org/10.1590/S0100-40422007000100027
Forestier, S. Rationale for sunscreen development. J. Am. Acad. Dermatol. 2008, 58 (5), S133–S138. https://doi.org/10.1016/j.jaad.2007.05.047
Fourtanier, A.; Moyal, D.; Seite, S. UVA filters in sun-protection products: regulatory and biological aspects. Photochem. Photobiol. 2012, 11 (1), 81–89. https://doi.org/10.1039/c1pp05152k
Franco, J. G.; Ataide, J. A.; Ferreira, A. H. P.; Mazzola, P. G. Lamellar compounds intercalated with anions with solar protection function: A review. J. Drug Deliv. Sci. Technol. 2020, 59, 101869. https://doi.org/10.1016/j.jddst.2020.101869
Frizzo, M. S.; Feuser, P. E.; Berres, P. H.; Ricci-Júnior; E.; Campos, C. E. M.; Costa, C.; Araújo, P. H. H.; Sayer, C. Simultaneous encapsulation of zinc oxide and octocrylene in poly (methyl methacrylate-co-styrene) nanoparticles obtained by miniemulsion polymerization for use in sunscreen formulations. Colloids Surf., A Physicochem. Eng. Asp. 2019, 561, 39–46. https://doi.org/10.1016/j.colsurfa.2018.10.062
Giokas, D. L.; Salvador, A.; Chisvert, A. UV filters: From sunscreens to human body and the environment. TrAC - Trends Anal. Chem. 2007, 26 (5), 360–374. https://doi.org/10.1016/j.trac.2007.02.012
Hasani, M.; Montazer, M. Electro-conductivity, bioactivity and UV protection of graphene oxide-treated cellulosic/polyamide fabric using inorganic and organic reducing agents. J. Text. Inst. 2017a, 108 (10), 1777–1786. https://doi.org/10.1080/00405000.2017.1286700
Hasani, M.; Montazer, M. Cationization of cellulose/polyamide on UV protection, bio-activity, and electro-conductivity of graphene oxide-treated fabric. J. Appl. Polym. Sci. 2017b, 134 (44), 45493. https://doi.org/10.1002/app.45493
Hoffmann, K.; Laperre, J.; Avermaete, A.; Altmeyer, P.; Gambichler, T. Defined UV protection by apparel textiles. Arch. Dermatol. 2001, 137 (8), 1089−1094.
Hu, X.; Tian, M.; Qu, L.; Zhu, S.; Han, G. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon. 2015, 95, 625–633. https://doi.org/10.1016/j.carbon.2015.08.099
Huang, J.; Yang, Y.; Yang, L.; Bu, Y.; Xia, T.; Gu, S.; Yang, H.; Ye, D.; Xu, W. Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO. Mater. Lett. 2019, 237, 149–151. https://doi.org/10.1016/j.matlet.2018.11.035
Ibrahim, N. A.; El-Zairy, E. M. R.; El-Zairy, M. R.; Khalil, H. M. Improving transfer printing and ultraviolet-blocking properties of polyester-based textiles using MCT-β-CD, chitosan and ethylenediamine. Color. Technol. 2010a, 126 (6), 330–336. https://doi.org/10.1111/j.1478-4408.2010.00265.x
Ibrahim, N. A.; Eid, B. M.; Hashem, M. M.; Refai, R.; El-Hossamy, M. Smart options for functional finishing of linen-containing fabrics. J. Ind. Text. 2010b, 39 (3), 233–265. https://doi.org/10.1177/1528083709103144
Ibrahim, N. A.; Eid, B. M.; El-Zairy, E. R. Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex. Carbohydr. Polym. 2011, 86 (3), 1313–1319. https://doi.org/10.1016/j.carbpol.2011.06.032
Ibrahim, N. A.; Eid, B. M.; Khalil, H. M.; Almetwally, A. A. A new approach for durable multifunctional coating of PET fabric. Appl. Surf. Sci. 2018, 448, 95–103. https://doi.org/10.1016/j.apsusc.2018.04.022
Ioelovich, M.; Leykin, A. Structural investigations of various cotton fibers and cotton celluloses. Bioresources. 2008, 3 (1), 170–177.
Jabbar, M.; Shaker, K. Textile Raw Materials. In Textile engineering: An introduction. Nawab, Y. Ed.; De Gruyter Oldenbourg, 2016; pp 7-24. https://doi.org/10.1515/9783110413267-004
Jaffe, M.; Easts, A. J.; Feng, X. Polyester fibers. In Thermal analysis of textiles and fibers: The Textile Institute Book Series. Jaffe, M., Menczel, J. D., Eds.; Woodhead Publishing, 2020; pp 133-150. https://doi.org/10.1016/B978-0-08-100572-9.00008-2
Jain, S. K.; Jain, N. K. Multiparticulate carriers for sun-screening agents. Int. J. Cosmet. Sci. 2010, 32 (2), 89–98. https://doi.org/10.1111/j.1468-2494.2010.00547.x
Jin, J., Li, N.; Xie, Y. Photocatalysis and UV-blocking properties of cotton fabric functionalized with BiPO4 nanorods. J. Eng. Fiber. Fabr. 2019, 14. https://doi.org/10.1177/1558925019888816
Khan, A.; Hussain, M. T.; Jiang, H.; Gul, S. Development of functional wool fabric by treatment with aqueous and alkaline extracts of Cinnamomum camphora plant leaves. J. Nat. Fibers. 2018, 17 (4), 472–481. https://doi.org/10.1080/15440478.2018.1500339
Khan, M. Z.; Militky, J.; Baheti, V.; Fijalkowski, M.; Wiener, J.; Voleský, L.; Adach, K. Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose. 2020, 27 (17), 10519–10539. https://doi.org/10.1007/s10570-020-03495-x
Kockler, J.; Oelgemöller, M.; Robertson, S.; Glass, B. D. Photostability of sunscreens. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13 (1), 91–110. https://doi.org/10.1016/j.jphotochemrev.2011.12.001
Li, Y.; Zou, Y.; Hou, Y. Fabrication and UV-blocking property of nano-ZnO assembled cotton fibers via a two-step hydrothermal method. Cellulose. 2011, 18 (6), 1643–1649. https://doi.org/10.1007/s10570-011-9600-5
Li, Y.; Hou, Y.; Zou, Y. Microwave assisted fabrication of Nano-ZnO assembled cotton fibers with excellent UV blocking property and water-wash durability. Fibers Polym. 2012, 13 (2), 185–190. https://doi.org/10.1007/s12221-012-0185-x
Li, S.; Zhu, T.; Huang, J.; Guo, Q.; Chen, G.; Lai, Y. Durable antibacterial and UV-protective Ag/TiO2@fabrics for sustainable biomedical application. Int. J. Nanomedicine. 2017, 12, 2593–2606. https://doi.org/10.2147/IJN.S132035
Li, N.; Pranantyo, D.; Kang, E.-T.; Wright, D. S.; Luo, H.-K. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: Multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications. Adv. Funct. Mater. 2018, 28 (23), 1800345. https://doi.org/10.1002/adfm.201800345
Li, G.-P.; Cao, F.; Zhang, K.; Hou, L.; Gao, R.-C.; Zhang, W.-Y.; Wang, Y.-Y. Design of anti-UV radiation textiles with self-assembled metal–organic framework coating. Adv. Mater. Interfaces. 2020, 7 (1), 1901525. https://doi.org/10.1002/admi.201901525
Liu, Y. Chemical composition and characterization of cotton fibers. In Cotton fiber: Physics, chemistry and biology. Fang, D. Ed.; Springer, 2018; pp 75-94. https://doi.org/10.1007/978-3-030-00871-0_4
Mai, Z.; Xiong, Z.; Shu, X.; Liu, X.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Zhang, M.; Xu, W.; Chen, D. Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydr. Polym. 2018, 199, 516–525. https://doi.org/10.1016/j.carbpol.2018.07.052
Mihailović, D.; Šaponjić, Z.; Molina, R.; Puač, N.; Jovančić, P.; Nedeljković, J.; Radetić, M. Improved properties of oxygen and argon RF plasma-activated polyester fabrics loaded with TiO2 nanoparticles. ACS Appl. Mater. Interfaces. 2010, 2 (6), 1700–1706. https://doi.org/10.1021/am100209n
Mihailović, D.; Šaponjić, Z.; Molina, R.; Radoičić, M.; Esquena, J.; Jovančić, P.; Nedeljković, J.; Radetić, M. Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles. Polym. Compos. 2011, 32 (3), 390–397. https://doi.org/10.1002/pc.21053
Mirjalili, M. Preparation of electroconductive, magnetic, antibacterial, and ultraviolet-blocking cotton fabric using reduced graphene oxide nanosheets and magnetite nanoparticles. Fibers Polym. 2016, 17 (10), 1579–1588. https://doi.org/10.1007/s12221-016-6689-z
Mohammed, U.; Lekakou, C.; Dong, L.; Bader, M. G. Shear deformation and micromechanics of woven fabrics. Compos. - A: Appl. Sci. 2000, 31 (4), 299–308. https://doi.org/10.1016/S1359-835X(99)00081-0
Mondal, S. Nanomaterials for UV protective textiles. J. Ind. Text. 2022, 51 (4), 5592S–5621S. https://doi.org/10.1177/1528083721988949
Montazer, M.; Pakdel, E. Reducing photoyellowing of wool using nano TiO2. Photochem. Photobiol. 2010, 86 (2), 255–260. https://doi.org/10.1111/j.1751-1097.2009.00680.x
Montazer, M.; Seifollahzadeh, S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem. Photobiol. 2011, 87 (4), 877–883. https://doi.org/10.1111/j.1751-1097.2011.00917.x
Montazer, M.; Pakdel, E. Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. J. Photochem. Photobiol. 2011, 12 (4), 293–303. https://doi.org/10.1016/j.jphotochemrev.2011.08.005
Montazer, M.; Amiri, M. M. ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J. Phys. Chem. B. 2014, 118 (6), 1453−1470. https://doi.org/10.1021/jp408532r
Montazer, M.; Dastjerdi, M.; Azdaloo, M.; Rad, M. M. Simultaneous synthesis and fabrication of nano Cu2O on cellulosic fabric using copper sulfate and glucose in alkali media producing safe bio-and photoactive textiles without color change. Cellulose. 2015, 22 (6), 4049–4064. https://doi.org/10.1007/s10570-015-0764-2
Morabito, K.; Shapley, N. C.; Steeley, K. G.; Tripathi, A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci. 2011, 33 (5), 385–390. https://doi.org/10.1111/j.1468-2494.2011.00654.x
Morshed, M. N.; Shen, X.; Deb, H.; Azad, S. A.; Zhang, X.; Li, R. Sonochemical fabrication of nanocryatalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance. J. Nat. Fibers. 2018, 17 (1), 41–54. https://doi.org/10.1080/15440478.2018.1465506
Münzel, T.; Kröller-Schon, S.; Oelze, M.; Gori, T.; Schmidt, F. P.; Steven, S.; Hahad, O.; Röösli, M.; Wunderli, J.-M.; Daiber, A.; Sørensen, M. Adverse cardiovascular effects of traffic noise with a focus on nighttime noise and the new WHO noise guidelines. Annu. Rev. Public Health. 2020, 41, 309–328. https://doi.org/10.1146/annurev-publhealth-081519-062400
Nateghi, M. R.; Shateri-Khalilabad, M. Silver nanowire-functionalized cotton fabric. Carbohydr. Polym. 2015, 117, 160–168. https://doi.org/10.1016/j.carbpol.2014.09.057
Nazari, A.; Montazer, M.; Mirjalili, M.; Nazari, S. Polyester with durable UV protection properties through using nano TiO2 and polysiloxane softener optimized by RSM. J. Text. Inst. 2013, 104 (5), 511–520. https://doi.org/10.1080/00405000.2012.746577
Noorian, S. A.; Hemmatinejad, N.; Bashari, A. One‐Pot Synthesis of Cu2O/ZnO Nanoparticles at present of folic acid to improve UV‐protective effect of cotton fabrics. Photochem. Photobiol. 2015, 91 (3), 510–517. https://doi.org/10.1111/php.12420
Noorian, S. A.; Hemmatinejad, N.; Navarro, J. A. R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int. J. Biol. Macromol. 2020, 154, 1215–1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276
Pakdel, E.; Naebe, M.; Kashi, S.; Cai, Z.; Xie, W.; Yuen, A. C. Y.; Montazer, M.; Sun, L.; Wang, X. Functional cotton fabric using hollow glass microspheres: Focus on thermal insulation, flame retardancy, UV-protection and acoustic performance. Prog. Org. Coat. 2020, 141, 105553. https://doi.org/10.1016/j.porgcoat.2020.105553
Pan, C.; Shen, L.; Shang, S.; Xing, Y. Preparation of superhydrophobic and UV blocking cotton fabric via sol-gel method and self-assembly. Appl. Surf. Sci. 2012, 259, 110–117. https://doi.org/10.1016/j.apsusc.2012.07.001
Pant, H. R.; Bajgai, M. P.; Nam, K. T.; Seo, Y. A.; Pandeya, D. R.; Hong, S. T.; Kim, H. Y. Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: A multifunctional nanocomposite textile material. J. Hazard. Mater. 2011, 185 (1), 124–130. https://doi.org/10.1016/j.jhazmat.2010.09.006
Parisi, O. I.; Aiello, D.; Casula, M. F.; Puoci, F.; Malivindi, R.; Scrivano, L.; Testa, F. Mesoporous nanocrystalline TiO2 loaded with ferulic acid for sunscreen and photo-protection: safety and efficacy assessment. RSC Adv. 2016, 6 (87), 83767–83775. https://doi.org/10.1039/C6RA07653J
Parwaiz, S.; Khan, M. M.; Pradhan, D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Mater. Express. 2019, 9 (3), 185–202. https://doi.org/10.1166/mex.2019.1495
Pettinari, R.; Marchetti, F.; Petrini, A.; Pettinari, C.; Lupidi, G.; Smoleński, P.; Scopelliti, R.; Riedel, T.; Dyson, P. J. From sunscreen to anticancer agent: Ruthenium(II) arene avobenzone complexes display potent anticancer activity. Organometallics. 2016, 35 (21), 3734−3742. https://doi.org/10.1021/acs.organomet.6b00694
Pezzolo, D. B. Tecidos: História, tramas, tipos e usos; Editora Senac-São Paulo, 2007.
Powers, J. M.; Murphy, J. E. J. Sunlight radiation as a villain and hero: 60 years of illuminating research. Int. J. Radiat. Biol. 2019, 95 (7), 1043–1049. https://doi.org/10.1080/09553002.2019.1627440
Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 2017, 727, 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
Rana, M.; Hao, B.; Mu, L.; Chen, L.; Ma, P.-C. Development of multi-functional cotton fabrics with Ag/AgBr-TiO2 nanocomposite coating. Compos. Sci. Technol. 2016, 122, 104–112. https://doi.org/10.1016/j.compscitech.2015.11.016
Raza, Z. A.; Anwar, F.; Ahmad, S.; Aslam, M. Fabrication of ZnO incorporated chitosan nanocomposites for enhanced functional properties of cellulosic fabric. Mater. Res. Express. 2016, 3 (11), 115001. https://doi.org/10.1088/2053-1591/3/11/115001
Razmkhah, M.; Montazer, M.; Rezaie, A. B.; Rad, M. M. Facile technique for wool coloration via locally forming of nano selenium photocatalyst imparting antibacterial and UV protection properties. J. Ind. Eng. Chem. 2021, 101, 153–164. https://doi.org/10.1016/j.jiec.2021.06.018
Rezaie, A. B.; Montazer, M.; Rad, M. M. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles. J. Photochem. Photobiol. B, Biol. 2017a, 176, 100–111. https://doi.org/10.1016/j.jphotobiol.2017.09.021
Rezaie, A. B.; Montazer, M.; Rad, M. M. A cleaner route for nanocolouration of wool fabric via green assembling of cupric oxide nanoparticles along with antibacterial and UV protection properties. J. Clean. Prod. 2017b, 166, 221–231. https://doi.org/10.1016/j.jclepro.2017.08.046
Rezaie, A. B.; Montazer, M.; Rad, M. M. Antibacterial, UV protective and ammonia sensing functionalized polyester fabric through in situ synthesis of cuprous oxide nanoparticles. Fibers Polym. 2017c, 18 (7), 1269–1279. https://doi.org/10.1007/s12221-017-7263-z
Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M. T.; Younus, A.; Raza, M.; Nosheen, A. Selection and optimization of silane coupling agents to develop durable functional cotton fabrics using TiO2 nanoparticles. Fibers Polym. 2021, 22 (1), 109–122. https://doi.org/10.1007/s12221-021-9245-4
Sadr, F. A.; Montazer, M. In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason. Sonochem. 2014, 21 (2), 681–691. https://doi.org/10.1016/j.ultsonch.2013.09.018
Saito, G. P.; Romero, J. H. S.; Cebim, M. A.; Davolos, M. R. Eu(III) doped LDH intercalated with cinnamate anion as multifunctional sunscreens. J. Lumin. 2018, 203, 160–164. https://doi.org/10.1016/j.jlumin.2018.06.039
Saito, G. P.; Bizari, M.; Cebim, M. A.; Correa, M. A.; Jafelicci Junior, M.; Davolos, M. R. Study of the colloidal stability and optical properties of sunscreen creams. Eclet. Quim. 2019, 44 (2), 26–36. https://doi.org/10.26850/1678-4618eqj.v44.2.2019.p26-36
Saito, G. P.; Matsumoto, A. C. L.; Assis, R. P.; Brunetti, I. L.; Cebim, M. A.; Davolos, M. R. Zn(Ferulate)-LSH systems as multifunctional filters. Molecules. 2021, 26 (8), 2349. https://doi.org/10.3390/molecules26082349
Sambandan, D. R.; Ratner, D. Sunscreens: An overview and update. J. Am. Acad. Dermatol. 2011, 64 (4), 748–758. https://doi.org/10.1016/j.jaad.2010.01.005
Sánchez, J. C. Têxteis inteligentes. Química Têxtil. 2006, 82, 58–77.
SEBRAE. Tecidos inteligentes. Resposta Técnica, 2014. https://bibliotecas.sebrae.com.br/chronus/ARQUIVOS_CHRONUS/bds/bds.nsf/aece3e5bd45d5ececd32418a25f27f56/$File/2014_06_30_RT_Maio_Moda_Tecidosinteligentes_pdf.pdf (accessed 2021-01-21).
Sedighi, A.; Montazer, M.; Mazinani, S. Fabrication of electrically conductive superparamagnetic fabric with microwave attenuation, antibacterial properties and UV protection using PEDOT/magnetite nanoparticles. Mater. Des. 2018, 160, 34–47. https://doi.org/10.1016/j.matdes.2018.08.046
Seixas, V. C.; Serra, O. A. Stability of Sunscreens Containing CePO4: Proposal for a New Inorganic UV Filter. Molecules. 2014, 19 (7), 9907–9925. https://doi.org/10.3390/molecules19079907
Serpone, N.; Dondi, D.; Albini, A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chim. Acta. 2007, 360 (3), 794–802. https://doi.org/10.1016/j.ica.2005.12.057
Serre, C.; Busuttil, V.; Botto, J.-M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018, 40 (4), 328–347. https://doi.org/10.1111/ics.12466
Shabbir, M.; Rather, L. J.; Mohammad, F. Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: Valorization of marigold. Ind. Crops Prod. 2018, 119, 277–282. https://doi.org/10.1016/j.indcrop.2018.04.016
Shateri-Khalilabad, M.; Yazdanshenas, M. E. Fabrication of superhydrophobic, antibacterial, and ultraviolet-blocking cotton fabric. J. Text. Inst. 2013a, 104 (8), 861–869. https://doi.org/10.1080/00405000.2012.761330
Shateri-Khalilabad, M.; Yazdanshenas, M. E. Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection. Text. Res. J. 2013b, 83 (10), 993–1004. https://doi.org/10.1177/0040517512468812
Subbiah, D. K.; Mani, G. K.; Babu, K. J.; Das, A.; Rayappan, J. B. B. Nanostructured ZnO on cotton fabrics – A novel flexible gas sensor & UV filter. J. Clean. Prod. 2018, 194, 372–382. https://doi.org/10.1016/j.jclepro.2018.05.110
Subramani, K.; Shanmugam, B. K.; Rangaraj, S.; Palanisamy, M.; Periasamy, P.; Venkatachalam, R. Screening the UV-blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications. IET Nanobiotechnol. 2017, 12 (4), 459–465. https://doi.org/10.1049/iet-nbt.2017.0097
Suryaprabha, T.; Sethuraman, M. G. A facile approach for fabrication superhydrophobic and UV-blocking cotton fabrics with self-cleaning properties. Fibers Polym. 2021, 22 (4), 1033–1040. https://doi.org/10.1007/s12221-021-0648-z
Tang, B.; Lin, X.; Zou, F.; Fan, Y.; Li, D.; Zhou, J.; Chen, W.; Wang, X. In situ synthesis of gold nanoparticles on cotton fabric for multifunctional applications. Cellulose. 2017, 24 (10), 4547–4560. https://doi.org/10.1007/s10570-017-1413-8
Thi, V. H. T.; Lee, B.-K. Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. J. Photochem. Photobiol. A Chem. 2017, 338, 13–22. https://doi.org/10.1016/j.jphotochem.2017.01.020
Tian, M.; Hu, X.; Qu, L.; Du, M.; Zhu, S.; Sun, Y.; Han, G. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Appl. Surf. Sci. 2016, 377, 141–148. https://doi.org/10.1016/j.apsusc.2016.03.183
Tiwari, S. K.; Mishra, R. K.; Ha, S. K.; Huczko, A. Evolution of graphene oxide and graphene: From imagination to industrialization. Chem. Nano. Mat. 2018, 4 (7), 598–620. https://doi.org/10.1002/cnma.201800089
Varesano, A.; Tonin, C. Improving electrical performances of wool textiles: Synthesis of conducting polypyrrole on the fiber surface. Text. Res. J. 2008, 78 (12), 1110–1115. https://doi.org/10.1177/0040517507077488
Vatansever, F.; Hamblin, M. R. Far infrared radiation (FIR): Its biological effects and medical applications. Photon. Lasers Med. 2012, 1 (4), 255–266. https://doi.org/10.1515/plm-2012-0034
Velasco, M. V. R.; Sarruf, F. D.; Salgado-Santos, I. M. N.; Haroutiounian-Filho, C. A.; Kaneki, T. M.; Baby, A. R. Broad spectrum bioactive sunscreens, Int. J. Pharm. 2008, 363 (1–2), 50–57. https://doi.org/10.1016/j.ijpharm.2008.06.031
Wang, S. Q.; Balagula, Y.; Osterwalder, U. Photoprotection: A review of the current and future technologies. Dermatol. Ther. 2010, 23 (1), 31–47. https://doi.org/10.1111/j.1529-8019.2009.01289.x
Wang, L.; Zhao, J.; Liu, H.; Huang, J. Design, modification and application of semiconductor photocatalysts. J. Taiwan Inst. Chem. 2018, 93, 590–602. https://doi.org/10.1016/j.jtice.2018.09.004
Wang, X.; Chen, X.; Cowling, S.; Wang, L.; Liu, X. Polymer brushes tethered ZnO crystal on cotton fiber and the application on durable and washable UV protective clothing. Adv. Mater. Interfaces. 2019, 6 (14), 1900564. https://doi.org/10.1002/admi.201900564
Wang, S.-D.; Wang, K.; Ma, Q.; Qu, C.-X. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater. Today Commun. 2020, 23, 100893. https://doi.org/10.1016/j.mtcomm.2020.100893
Wang, H.; Memon, H. Cotton science and processing technology: Gene, ginning, garment and green recycling; Springer, 2020.
Xu, L.; Shen, Y.; Ding, Y.; Wang, L. Superhydrophobic and ultraviolet-blocking cotton fabrics based on TiO2/SiO2 composite nanoparticles. J. Nanosci. Nanotechnol. 2018, 18 (10), 6879–6886. https://doi.org/10.1166/jnn.2018.15463
Xue, C.-H.; Yin, W.; Jia, S.-T.; Ma, J.-Z. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles. Nanotechnology. 2011, 22 (41), 415603. https://doi.org/10.1088/0957-4484/22/41/415603
Xue, C.-H; Yin, W.; Zhang, P.; Zhang, J.; Ji, P.-T.; Jia, S.-T. UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 427, 7–12. https://doi.org/10.1016/j.colsurfa.2013.03.021
Yadav, H. M.; Kim, J.-S.; Pawar, S. H. Developments in photocatalytic antibacterial activity of nano TiO2: A review. Korean J. Chem. Eng. 2016, 33 (7), 1989–1998 https://doi.org/10.1007/s11814-016-0118-2
Yildirim, K.; Kanber, A.; Karahan, M.; Karahan, N. The solar properties of fabrics produced using different weft yarns. Text. Res. J. 2000, 88 (13), 1543–1558. https://doi.org/10.1016/S1359-835X(99)00081-0
Yue Y.; Zhou, C.; French, A. D.; Xia, G.; Han, G.; Wang, Q.; Wu, Q. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose. 2012, 19 (4), 1173–1187. https://doi.org/10.1007/s10570-012-9714-4
Zhang, D.; Chen, L.; Fang, D.; Toh, G. W.; Yue, X.; Chen, Y.; Lin, H. In situ generation and deposition of nano-ZnO on cotton fabric by hyperbranched polymer for its functional finishing. Text. Res. J. 2013, 83 (15), 1625–1633. https://doi.org/10.1177/0040517512474362
Zhang, K.; Yang, Z.; Mao, X.; Chen, X.-L.; Li, H.-H.; Wang, Y.-Y. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl. Mater. Interfaces. 2020, 12 (49), 55316–55323. https://doi.org/10.1021/acsami.0c18147
Zhao, Y.; Xu, Z.; Wang, X.; Lin, T. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl. Surf. Sci. 2013, 286, 364–370. https://doi.org/10.1016/j.apsusc.2013.09.092
Zhou, S.; Wang, F.; Balachandran, S.; Li, G.; Zhang, X.; Wang, R.; Liu, P.; Ding, Y.; Zhang, S.; Yang, M. Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties. RSC Adv. 2017, 7 (83), 52375–52381. https://doi.org/10.1039/C7RA09613E
Zohoori, S.; Payvandy, P.; Bekrani, M. Antibacterial, self-cleaning and UV blocking of wool fabric coated with nano Ce/ZnO and Ce/TiO2. Indian J. Fibre Text. Res. 2021, 46 (1), 57–62. https://doi.org/10.56042/ijftr.v46i1.25171