Abstract
Excessive exposure to solar ultraviolet (UV) radiation causes human health damages, such as sunburns and skin cancer. Thus, the use of sun-protective clothing is a simple, easy, and practical method for UV protection of the human organism. In this perspective, incorporation, coating, and anchorage of UV-protective compounds in textile fibers have been employed to enhance the UV-blocking ability and/or promote functional finishings to smart fabrics. This review describes recent research efforts on the development of UV-protective compound-containing smart fabrics highlighting the UV-blocking properties and multifunctional activities. Different compound class examples and discussions are presented in order to contribute to new insights into sun-protective clothing and future applications of multifunctional textiles.
References
AATCC 124. Appearance of durable press fabrics after repeated home laundering. American Association of Textile Chemists and Colorists, 1996. https://law.resource.org/pub/us/cfr/ibr/001/aatcc.tm.124.1996.pdf (accessed 2021-01-21).
AATCC 135. Dimensional change. American Association of Textile Chemists and Colorists, 2000. https://global.ihs.com/doc_detail.cfm?&item_s_key=00157760&item_key_date=991231&input_doc_number=&input_doc_title= (accessed 2021-01-21).
AATCC 61. Colorfastness to laundering, home and commercial: Accelerated. American Association of Textile Chemists and Colorists, 2006. https://global.ihs.com/doc_detail.cfm?&input_doc_number=&input_doc_title=&document_name=AATCC%2061&item_s_key=00255811&item_key_date=931231&origin=DSSC (accessed 2021-01-21).
AATCC M6. Standardization of home laundry test conditions. American Association of Textile Chemists and Colorists, 2010. https://global.ihs.com/doc_detail.cfm?&input_doc_number=&input_doc_title=&document_name=AATCC%20M6&item_s_key=00490394&item_key_date=891231&origin=DSSC (accessed 2021-01-21).
Abuçafy, M. P.; Manaia, E. B.; Kaminski, R. C. K.; Sarmento, V. H.; Chiavacci, L. A. Gel based sunscreen containing surface modified TiO2 obtained by sol-gel process: Proposal for a transparent UV inorganic filter. J. Nanomater. 2016, 2016, 8659240. https://doi.org/10.1155/2016/8659240
Ahmedova, A.; Mantareva, V.; Enchev, V.; Mitewa, M. 2-Acetylindan-1,3-dione and its Cu2+ and Zn2+ complexes as promising sunscreen agents. Int. J. Cosmet. Sci. 2002, 24 (2), 103–110. https://doi.org/10.1046/j.1467-2494.2002.00126.x
Alebeid, O. K.; Zhao, T. Review on: Developing UV protection for cotton fabric. J. Text. Inst. 2017, 108 (12), 2027–2039. https://doi.org/10.1080/00405000.2017.1311201
Antoniou, C.; Kosmadaki, M. G.; Stratigos, A. J.; Katsambas, A. D. Sunscreens – What’s important to know. J. Eur. Acad. Dermatology Venereol. 2008, 22 (9), 1110–1119. https://doi.org/10.1111/j.1468-3083.2007.02580.x
Ates, E. S.; Unalan, H. E. Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films. 2012, 520 (14), 4658–4661. https://doi.org/10.1016/j.tsf.2011.10.073
Babaahmadi, V.; Montazer, M. Reduced graphene oxide/SnO2 nanocomposite on PET surface: Synthesis, characterization and application as an electro-conductive and ultraviolet blocking textile. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 506, 507–513. https://doi.org/10.1016/j.colsurfa.2016.07.025
Bagde, A.; Mondal, A.; Singh, M. Drug delivery strategies for chemoprevention of UVB-induced skin cancer: A review. Photodermatol. Photoimmunol. Photomed. 2018, 34 (1), 60–68. https://doi.org/10.1111/phpp.12368
Baker, L. A.; Marchetti, B.; Karsili, T. N. V.; Stavros, V. G.; Ashfold, M. N. R. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chem. Soc. Rev. 2017, 46 (12), 3770–3791. https://doi.org/10.1039/C7CS00102A
Banerjee, S.; Dionysiou, D. D.; Pillai, S. C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. 2015, 176-177, 396–428. https://doi.org/10.1016/j.apcatb.2015.03.058
Bouazizi, N.; Abed, A.; Giraud, S.; El Achari, A.; Campagne, C.; Morshed, M. N.; Thoumire, O.; El Moznine, R.; Cherkaoui, O.; Vieillard, J.; Le Derf, F. Development of new composite fibers with excellent UV radiation protection. Phys. E Low-Dimensional Syst. Nanostructures. 2020, 118, 113905. https://doi.org/10.1016/j.physe.2019.113905
BS EN ISO 105-C06:2010. Textiles. Tests for colour fastness Colour fastness to domestic and commercial laundering. International Organization for Standardization, 2010. https://www.en-standard.eu/bs-en-iso-105-c06-2010-textiles-tests-for-colour-fastness-colour-fastness-to-domestic-and-commercial-laundering/?gclid=CjwKCAiAheacBhB8EiwAItVO2-iHqcpqedUsYMAtalfWKiCYHqy7ARvxEnufx5sl3ILFxrU9ntnrLBoCEtcQAvD_BwE (accessed 2021-01-21).
Çakir, B. A.; Budama, L.; Topel, Ö.; Hoda, N. Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 414, 132–139. https://doi.org/10.1016/j.colsurfa.2012.08.015
Chau, C.-F.; Wu, S.-H.; Yen, G.-C. The development of regulations for food nanotechnology. Trends Food Sci. Technol. 2007, 18 (5), 269-280. https://doi.org/10.1016/j.tifs.2007.01.007
Chen, Z.; Yin, G. Suitability of a rare earth organic light conversion agent of Eu(III) complex to improve ultraviolet protection properties of cotton fabrics. Text. Res. J. 2010, 80 (18), 1982–1989. https://doi.org/10.1177/0040517510373631
Chen, D.; Mai, Z.; Liu, X.; Ye, D.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Xu, W. UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose. 2018, 25 (6), 3635–3647. https://doi.org/10.1007/s10570-018-1790-7
Chimeh, A. E.; Montazer, M. Fabrication of nano-TiO2/carbon nanotubes and nano-TiO2/nanocarbon black on alkali hydrolyzed polyester producing photoactive conductive fabric. J. Text. Inst. 2016, 107 (1), 95–106. https://doi.org/10.1080/00405000.2015.1012881
Costa, M. Nanotecnologia. O que é? Química Têxtil. 2012, 106, 3–11.
Čuk, N.; Šala, M.; Gorjanc, M. Development of antibacterial and UV protective cotton fabrics using plant food waste and alien invasive plant extracts as reducing agents for the in-situ synthesis of silver nanoparticles. Cellulose. 2021, 28 (5), 3215–3233. https://doi.org/10.1007/s10570-021-03715-y
Curtzwiler, G. W.; Williams, E.B.; Maples, A. L.; Davis, N.W.; Bahns, T. L.; De Leon, J. E.; Vorst, K. L. Ultraviolet protection of recycled polyethylene terephthalate. J. Appl. Polym. Sci. 2017, 134 (32), 45181. https://doi.org/10.1002/app.45181
Dastjerdia, R.; Montazer, M.; Shahsavan, S. A novel technique for producing durable multifunctional textiles using nanocomposite coating. Colloids Surf. B. 2010, 81 (1), 32–41. https://doi.org/10.1016/j.colsurfb.2010.06.023
El-Naggar, M. E.; Shaarawy, S.; Hebeish, A. A. Multifunctional properties of cotton fabrics coated with in situ synthesis of zinc oxide nanoparticles capped with date seed extract. Carbohydr. Polym. 2018, 181, 307–316. https://doi.org/10.1016/j.carbpol.2017.10.074
Emam, H. E.; Bechtold, T. Cotton fabrics with UV blocking properties through metal salts deposition. Appl. Surf. Sci. 2015, 357 (Part B), 1878–1889. https://doi.org/10.1016/j.apsusc.2015.09.095
Emam, H. E.; Abdelhameed, R. M. Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)-metal organic framework. ACS Appl. Mater. Interfaces. 2017, 9 (33), 28034–28045. https://doi.org/10.1021/acsami.7b07357
Emam, H. E.; Darwesh, O. M.; Abdelhameed, R. M. Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole frameworks. Ind. Eng. Chem. Res. 2020, 59 (23), 10931–10944. https://doi.org/10.1021/acs.iecr.0c01384
Fakin, D.; Veronovski, N.; Ojstršek, A.; Božič, M. Synthesis of TiO2-SiO2 colloid and its performance in reactive dyeing of cotton fabrics. Carbohydr. Polym. 2012, 88 (3), 992–1001. https://doi.org/10.1016/j.carbpol.2012.01.046
Faure, B.; Salazar-Alvarez, G.; Ahniyaz, A.; Villaluenga, I.; Berriozabal, G.; De Miguel, Y. R.; Bergström, L. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci. Technol. Adv. Mater. 2013, 14 (2), 023001. https://doi.org/10.1088/1468-6996/14/2/023001
Ferreira, A. J. S.; Ferreira, F. B. N.; Oliveira, F. R. Têxteis inteligentes: Uma breve revisão da literatura. REDIGE. 2014, 5 (1), 1–22.
Flor, J.; Davolos, M. R.; Correa, M. A. Protetores solares. Quim. Nova. 2007, 30 (1), 153–158. https://doi.org/10.1590/S0100-40422007000100027
Forestier, S. Rationale for sunscreen development. J. Am. Acad. Dermatol. 2008, 58 (5), S133–S138. https://doi.org/10.1016/j.jaad.2007.05.047
Fourtanier, A.; Moyal, D.; Seite, S. UVA filters in sun-protection products: regulatory and biological aspects. Photochem. Photobiol. 2012, 11 (1), 81–89. https://doi.org/10.1039/c1pp05152k
Franco, J. G.; Ataide, J. A.; Ferreira, A. H. P.; Mazzola, P. G. Lamellar compounds intercalated with anions with solar protection function: A review. J. Drug Deliv. Sci. Technol. 2020, 59, 101869. https://doi.org/10.1016/j.jddst.2020.101869
Frizzo, M. S.; Feuser, P. E.; Berres, P. H.; Ricci-Júnior; E.; Campos, C. E. M.; Costa, C.; Araújo, P. H. H.; Sayer, C. Simultaneous encapsulation of zinc oxide and octocrylene in poly (methyl methacrylate-co-styrene) nanoparticles obtained by miniemulsion polymerization for use in sunscreen formulations. Colloids Surf., A Physicochem. Eng. Asp. 2019, 561, 39–46. https://doi.org/10.1016/j.colsurfa.2018.10.062
Giokas, D. L.; Salvador, A.; Chisvert, A. UV filters: From sunscreens to human body and the environment. TrAC - Trends Anal. Chem. 2007, 26 (5), 360–374. https://doi.org/10.1016/j.trac.2007.02.012
Hasani, M.; Montazer, M. Electro-conductivity, bioactivity and UV protection of graphene oxide-treated cellulosic/polyamide fabric using inorganic and organic reducing agents. J. Text. Inst. 2017a, 108 (10), 1777–1786. https://doi.org/10.1080/00405000.2017.1286700
Hasani, M.; Montazer, M. Cationization of cellulose/polyamide on UV protection, bio-activity, and electro-conductivity of graphene oxide-treated fabric. J. Appl. Polym. Sci. 2017b, 134 (44), 45493. https://doi.org/10.1002/app.45493
Hoffmann, K.; Laperre, J.; Avermaete, A.; Altmeyer, P.; Gambichler, T. Defined UV protection by apparel textiles. Arch. Dermatol. 2001, 137 (8), 1089−1094.
Hu, X.; Tian, M.; Qu, L.; Zhu, S.; Han, G. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties. Carbon. 2015, 95, 625–633. https://doi.org/10.1016/j.carbon.2015.08.099
Huang, J.; Yang, Y.; Yang, L.; Bu, Y.; Xia, T.; Gu, S.; Yang, H.; Ye, D.; Xu, W. Fabrication of multifunctional silk fabrics via one step in-situ synthesis of ZnO. Mater. Lett. 2019, 237, 149–151. https://doi.org/10.1016/j.matlet.2018.11.035
Ibrahim, N. A.; El-Zairy, E. M. R.; El-Zairy, M. R.; Khalil, H. M. Improving transfer printing and ultraviolet-blocking properties of polyester-based textiles using MCT-β-CD, chitosan and ethylenediamine. Color. Technol. 2010a, 126 (6), 330–336. https://doi.org/10.1111/j.1478-4408.2010.00265.x
Ibrahim, N. A.; Eid, B. M.; Hashem, M. M.; Refai, R.; El-Hossamy, M. Smart options for functional finishing of linen-containing fabrics. J. Ind. Text. 2010b, 39 (3), 233–265. https://doi.org/10.1177/1528083709103144
Ibrahim, N. A.; Eid, B. M.; El-Zairy, E. R. Antibacterial functionalization of reactive-cellulosic prints via inclusion of bioactive Neem oil/βCD complex. Carbohydr. Polym. 2011, 86 (3), 1313–1319. https://doi.org/10.1016/j.carbpol.2011.06.032
Ibrahim, N. A.; Eid, B. M.; Khalil, H. M.; Almetwally, A. A. A new approach for durable multifunctional coating of PET fabric. Appl. Surf. Sci. 2018, 448, 95–103. https://doi.org/10.1016/j.apsusc.2018.04.022
Ioelovich, M.; Leykin, A. Structural investigations of various cotton fibers and cotton celluloses. Bioresources. 2008, 3 (1), 170–177.
Jabbar, M.; Shaker, K. Textile Raw Materials. In Textile engineering: An introduction. Nawab, Y. Ed.; De Gruyter Oldenbourg, 2016; pp 7-24. https://doi.org/10.1515/9783110413267-004
Jaffe, M.; Easts, A. J.; Feng, X. Polyester fibers. In Thermal analysis of textiles and fibers: The Textile Institute Book Series. Jaffe, M., Menczel, J. D., Eds.; Woodhead Publishing, 2020; pp 133-150. https://doi.org/10.1016/B978-0-08-100572-9.00008-2
Jain, S. K.; Jain, N. K. Multiparticulate carriers for sun-screening agents. Int. J. Cosmet. Sci. 2010, 32 (2), 89–98. https://doi.org/10.1111/j.1468-2494.2010.00547.x
Jin, J., Li, N.; Xie, Y. Photocatalysis and UV-blocking properties of cotton fabric functionalized with BiPO4 nanorods. J. Eng. Fiber. Fabr. 2019, 14. https://doi.org/10.1177/1558925019888816
Khan, A.; Hussain, M. T.; Jiang, H.; Gul, S. Development of functional wool fabric by treatment with aqueous and alkaline extracts of Cinnamomum camphora plant leaves. J. Nat. Fibers. 2018, 17 (4), 472–481. https://doi.org/10.1080/15440478.2018.1500339
Khan, M. Z.; Militky, J.; Baheti, V.; Fijalkowski, M.; Wiener, J.; Voleský, L.; Adach, K. Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose. 2020, 27 (17), 10519–10539. https://doi.org/10.1007/s10570-020-03495-x
Kockler, J.; Oelgemöller, M.; Robertson, S.; Glass, B. D. Photostability of sunscreens. J. Photochem. Photobiol. C Photochem. Rev. 2012, 13 (1), 91–110. https://doi.org/10.1016/j.jphotochemrev.2011.12.001
Li, Y.; Zou, Y.; Hou, Y. Fabrication and UV-blocking property of nano-ZnO assembled cotton fibers via a two-step hydrothermal method. Cellulose. 2011, 18 (6), 1643–1649. https://doi.org/10.1007/s10570-011-9600-5
Li, Y.; Hou, Y.; Zou, Y. Microwave assisted fabrication of Nano-ZnO assembled cotton fibers with excellent UV blocking property and water-wash durability. Fibers Polym. 2012, 13 (2), 185–190. https://doi.org/10.1007/s12221-012-0185-x
Li, S.; Zhu, T.; Huang, J.; Guo, Q.; Chen, G.; Lai, Y. Durable antibacterial and UV-protective Ag/TiO2@fabrics for sustainable biomedical application. Int. J. Nanomedicine. 2017, 12, 2593–2606. https://doi.org/10.2147/IJN.S132035
Li, N.; Pranantyo, D.; Kang, E.-T.; Wright, D. S.; Luo, H.-K. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: Multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications. Adv. Funct. Mater. 2018, 28 (23), 1800345. https://doi.org/10.1002/adfm.201800345
Li, G.-P.; Cao, F.; Zhang, K.; Hou, L.; Gao, R.-C.; Zhang, W.-Y.; Wang, Y.-Y. Design of anti-UV radiation textiles with self-assembled metal–organic framework coating. Adv. Mater. Interfaces. 2020, 7 (1), 1901525. https://doi.org/10.1002/admi.201901525
Liu, Y. Chemical composition and characterization of cotton fibers. In Cotton fiber: Physics, chemistry and biology. Fang, D. Ed.; Springer, 2018; pp 75-94. https://doi.org/10.1007/978-3-030-00871-0_4
Mai, Z.; Xiong, Z.; Shu, X.; Liu, X.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Zhang, M.; Xu, W.; Chen, D. Multifunctionalization of cotton fabrics with polyvinylsilsesquioxane/ZnO composite coatings. Carbohydr. Polym. 2018, 199, 516–525. https://doi.org/10.1016/j.carbpol.2018.07.052
Mihailović, D.; Šaponjić, Z.; Molina, R.; Puač, N.; Jovančić, P.; Nedeljković, J.; Radetić, M. Improved properties of oxygen and argon RF plasma-activated polyester fabrics loaded with TiO2 nanoparticles. ACS Appl. Mater. Interfaces. 2010, 2 (6), 1700–1706. https://doi.org/10.1021/am100209n
Mihailović, D.; Šaponjić, Z.; Molina, R.; Radoičić, M.; Esquena, J.; Jovančić, P.; Nedeljković, J.; Radetić, M. Multifunctional properties of polyester fabrics modified by corona discharge/air RF plasma and colloidal TiO2 nanoparticles. Polym. Compos. 2011, 32 (3), 390–397. https://doi.org/10.1002/pc.21053
Mirjalili, M. Preparation of electroconductive, magnetic, antibacterial, and ultraviolet-blocking cotton fabric using reduced graphene oxide nanosheets and magnetite nanoparticles. Fibers Polym. 2016, 17 (10), 1579–1588. https://doi.org/10.1007/s12221-016-6689-z
Mohammed, U.; Lekakou, C.; Dong, L.; Bader, M. G. Shear deformation and micromechanics of woven fabrics. Compos. - A: Appl. Sci. 2000, 31 (4), 299–308. https://doi.org/10.1016/S1359-835X(99)00081-0
Mondal, S. Nanomaterials for UV protective textiles. J. Ind. Text. 2022, 51 (4), 5592S–5621S. https://doi.org/10.1177/1528083721988949
Montazer, M.; Pakdel, E. Reducing photoyellowing of wool using nano TiO2. Photochem. Photobiol. 2010, 86 (2), 255–260. https://doi.org/10.1111/j.1751-1097.2009.00680.x
Montazer, M.; Seifollahzadeh, S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem. Photobiol. 2011, 87 (4), 877–883. https://doi.org/10.1111/j.1751-1097.2011.00917.x
Montazer, M.; Pakdel, E. Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. J. Photochem. Photobiol. 2011, 12 (4), 293–303. https://doi.org/10.1016/j.jphotochemrev.2011.08.005
Montazer, M.; Amiri, M. M. ZnO nano reactor on textiles and polymers: ex situ and in situ synthesis, application, and characterization. J. Phys. Chem. B. 2014, 118 (6), 1453−1470. https://doi.org/10.1021/jp408532r
Montazer, M.; Dastjerdi, M.; Azdaloo, M.; Rad, M. M. Simultaneous synthesis and fabrication of nano Cu2O on cellulosic fabric using copper sulfate and glucose in alkali media producing safe bio-and photoactive textiles without color change. Cellulose. 2015, 22 (6), 4049–4064. https://doi.org/10.1007/s10570-015-0764-2
Morabito, K.; Shapley, N. C.; Steeley, K. G.; Tripathi, A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci. 2011, 33 (5), 385–390. https://doi.org/10.1111/j.1468-2494.2011.00654.x
Morshed, M. N.; Shen, X.; Deb, H.; Azad, S. A.; Zhang, X.; Li, R. Sonochemical fabrication of nanocryatalline titanium dioxide (TiO2) in cotton fiber for durable ultraviolet resistance. J. Nat. Fibers. 2018, 17 (1), 41–54. https://doi.org/10.1080/15440478.2018.1465506
Münzel, T.; Kröller-Schon, S.; Oelze, M.; Gori, T.; Schmidt, F. P.; Steven, S.; Hahad, O.; Röösli, M.; Wunderli, J.-M.; Daiber, A.; Sørensen, M. Adverse cardiovascular effects of traffic noise with a focus on nighttime noise and the new WHO noise guidelines. Annu. Rev. Public Health. 2020, 41, 309–328. https://doi.org/10.1146/annurev-publhealth-081519-062400
Nateghi, M. R.; Shateri-Khalilabad, M. Silver nanowire-functionalized cotton fabric. Carbohydr. Polym. 2015, 117, 160–168. https://doi.org/10.1016/j.carbpol.2014.09.057
Nazari, A.; Montazer, M.; Mirjalili, M.; Nazari, S. Polyester with durable UV protection properties through using nano TiO2 and polysiloxane softener optimized by RSM. J. Text. Inst. 2013, 104 (5), 511–520. https://doi.org/10.1080/00405000.2012.746577
Noorian, S. A.; Hemmatinejad, N.; Bashari, A. One‐Pot Synthesis of Cu2O/ZnO Nanoparticles at present of folic acid to improve UV‐protective effect of cotton fabrics. Photochem. Photobiol. 2015, 91 (3), 510–517. https://doi.org/10.1111/php.12420
Noorian, S. A.; Hemmatinejad, N.; Navarro, J. A. R. Ligand modified cellulose fabrics as support of zinc oxide nanoparticles for UV protection and antimicrobial activities. Int. J. Biol. Macromol. 2020, 154, 1215–1226. https://doi.org/10.1016/j.ijbiomac.2019.10.276
Pakdel, E.; Naebe, M.; Kashi, S.; Cai, Z.; Xie, W.; Yuen, A. C. Y.; Montazer, M.; Sun, L.; Wang, X. Functional cotton fabric using hollow glass microspheres: Focus on thermal insulation, flame retardancy, UV-protection and acoustic performance. Prog. Org. Coat. 2020, 141, 105553. https://doi.org/10.1016/j.porgcoat.2020.105553
Pan, C.; Shen, L.; Shang, S.; Xing, Y. Preparation of superhydrophobic and UV blocking cotton fabric via sol-gel method and self-assembly. Appl. Surf. Sci. 2012, 259, 110–117. https://doi.org/10.1016/j.apsusc.2012.07.001
Pant, H. R.; Bajgai, M. P.; Nam, K. T.; Seo, Y. A.; Pandeya, D. R.; Hong, S. T.; Kim, H. Y. Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: A multifunctional nanocomposite textile material. J. Hazard. Mater. 2011, 185 (1), 124–130. https://doi.org/10.1016/j.jhazmat.2010.09.006
Parisi, O. I.; Aiello, D.; Casula, M. F.; Puoci, F.; Malivindi, R.; Scrivano, L.; Testa, F. Mesoporous nanocrystalline TiO2 loaded with ferulic acid for sunscreen and photo-protection: safety and efficacy assessment. RSC Adv. 2016, 6 (87), 83767–83775. https://doi.org/10.1039/C6RA07653J
Parwaiz, S.; Khan, M. M.; Pradhan, D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Mater. Express. 2019, 9 (3), 185–202. https://doi.org/10.1166/mex.2019.1495
Pettinari, R.; Marchetti, F.; Petrini, A.; Pettinari, C.; Lupidi, G.; Smoleński, P.; Scopelliti, R.; Riedel, T.; Dyson, P. J. From sunscreen to anticancer agent: Ruthenium(II) arene avobenzone complexes display potent anticancer activity. Organometallics. 2016, 35 (21), 3734−3742. https://doi.org/10.1021/acs.organomet.6b00694
Pezzolo, D. B. Tecidos: História, tramas, tipos e usos; Editora Senac-São Paulo, 2007.
Powers, J. M.; Murphy, J. E. J. Sunlight radiation as a villain and hero: 60 years of illuminating research. Int. J. Radiat. Biol. 2019, 95 (7), 1043–1049. https://doi.org/10.1080/09553002.2019.1627440
Qi, K.; Cheng, B.; Yu, J.; Ho, W. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 2017, 727, 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142
Rana, M.; Hao, B.; Mu, L.; Chen, L.; Ma, P.-C. Development of multi-functional cotton fabrics with Ag/AgBr-TiO2 nanocomposite coating. Compos. Sci. Technol. 2016, 122, 104–112. https://doi.org/10.1016/j.compscitech.2015.11.016
Raza, Z. A.; Anwar, F.; Ahmad, S.; Aslam, M. Fabrication of ZnO incorporated chitosan nanocomposites for enhanced functional properties of cellulosic fabric. Mater. Res. Express. 2016, 3 (11), 115001. https://doi.org/10.1088/2053-1591/3/11/115001
Razmkhah, M.; Montazer, M.; Rezaie, A. B.; Rad, M. M. Facile technique for wool coloration via locally forming of nano selenium photocatalyst imparting antibacterial and UV protection properties. J. Ind. Eng. Chem. 2021, 101, 153–164. https://doi.org/10.1016/j.jiec.2021.06.018
Rezaie, A. B.; Montazer, M.; Rad, M. M. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles. J. Photochem. Photobiol. B, Biol. 2017a, 176, 100–111. https://doi.org/10.1016/j.jphotobiol.2017.09.021
Rezaie, A. B.; Montazer, M.; Rad, M. M. A cleaner route for nanocolouration of wool fabric via green assembling of cupric oxide nanoparticles along with antibacterial and UV protection properties. J. Clean. Prod. 2017b, 166, 221–231. https://doi.org/10.1016/j.jclepro.2017.08.046
Rezaie, A. B.; Montazer, M.; Rad, M. M. Antibacterial, UV protective and ammonia sensing functionalized polyester fabric through in situ synthesis of cuprous oxide nanoparticles. Fibers Polym. 2017c, 18 (7), 1269–1279. https://doi.org/10.1007/s12221-017-7263-z
Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M. T.; Younus, A.; Raza, M.; Nosheen, A. Selection and optimization of silane coupling agents to develop durable functional cotton fabrics using TiO2 nanoparticles. Fibers Polym. 2021, 22 (1), 109–122. https://doi.org/10.1007/s12221-021-9245-4
Sadr, F. A.; Montazer, M. In situ sonosynthesis of nano TiO2 on cotton fabric. Ultrason. Sonochem. 2014, 21 (2), 681–691. https://doi.org/10.1016/j.ultsonch.2013.09.018
Saito, G. P.; Romero, J. H. S.; Cebim, M. A.; Davolos, M. R. Eu(III) doped LDH intercalated with cinnamate anion as multifunctional sunscreens. J. Lumin. 2018, 203, 160–164. https://doi.org/10.1016/j.jlumin.2018.06.039
Saito, G. P.; Bizari, M.; Cebim, M. A.; Correa, M. A.; Jafelicci Junior, M.; Davolos, M. R. Study of the colloidal stability and optical properties of sunscreen creams. Eclet. Quim. 2019, 44 (2), 26–36. https://doi.org/10.26850/1678-4618eqj.v44.2.2019.p26-36
Saito, G. P.; Matsumoto, A. C. L.; Assis, R. P.; Brunetti, I. L.; Cebim, M. A.; Davolos, M. R. Zn(Ferulate)-LSH systems as multifunctional filters. Molecules. 2021, 26 (8), 2349. https://doi.org/10.3390/molecules26082349
Sambandan, D. R.; Ratner, D. Sunscreens: An overview and update. J. Am. Acad. Dermatol. 2011, 64 (4), 748–758. https://doi.org/10.1016/j.jaad.2010.01.005
Sánchez, J. C. Têxteis inteligentes. Química Têxtil. 2006, 82, 58–77.
SEBRAE. Tecidos inteligentes. Resposta Técnica, 2014. https://bibliotecas.sebrae.com.br/chronus/ARQUIVOS_CHRONUS/bds/bds.nsf/aece3e5bd45d5ececd32418a25f27f56/$File/2014_06_30_RT_Maio_Moda_Tecidosinteligentes_pdf.pdf (accessed 2021-01-21).
Sedighi, A.; Montazer, M.; Mazinani, S. Fabrication of electrically conductive superparamagnetic fabric with microwave attenuation, antibacterial properties and UV protection using PEDOT/magnetite nanoparticles. Mater. Des. 2018, 160, 34–47. https://doi.org/10.1016/j.matdes.2018.08.046
Seixas, V. C.; Serra, O. A. Stability of Sunscreens Containing CePO4: Proposal for a New Inorganic UV Filter. Molecules. 2014, 19 (7), 9907–9925. https://doi.org/10.3390/molecules19079907
Serpone, N.; Dondi, D.; Albini, A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chim. Acta. 2007, 360 (3), 794–802. https://doi.org/10.1016/j.ica.2005.12.057
Serre, C.; Busuttil, V.; Botto, J.-M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018, 40 (4), 328–347. https://doi.org/10.1111/ics.12466
Shabbir, M.; Rather, L. J.; Mohammad, F. Economically viable UV-protective and antioxidant finishing of wool fabric dyed with Tagetes erecta flower extract: Valorization of marigold. Ind. Crops Prod. 2018, 119, 277–282. https://doi.org/10.1016/j.indcrop.2018.04.016
Shateri-Khalilabad, M.; Yazdanshenas, M. E. Fabrication of superhydrophobic, antibacterial, and ultraviolet-blocking cotton fabric. J. Text. Inst. 2013a, 104 (8), 861–869. https://doi.org/10.1080/00405000.2012.761330
Shateri-Khalilabad, M.; Yazdanshenas, M. E. Bifunctionalization of cotton textiles by ZnO nanostructures: antimicrobial activity and ultraviolet protection. Text. Res. J. 2013b, 83 (10), 993–1004. https://doi.org/10.1177/0040517512468812
Subbiah, D. K.; Mani, G. K.; Babu, K. J.; Das, A.; Rayappan, J. B. B. Nanostructured ZnO on cotton fabrics – A novel flexible gas sensor & UV filter. J. Clean. Prod. 2018, 194, 372–382. https://doi.org/10.1016/j.jclepro.2018.05.110
Subramani, K.; Shanmugam, B. K.; Rangaraj, S.; Palanisamy, M.; Periasamy, P.; Venkatachalam, R. Screening the UV-blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications. IET Nanobiotechnol. 2017, 12 (4), 459–465. https://doi.org/10.1049/iet-nbt.2017.0097
Suryaprabha, T.; Sethuraman, M. G. A facile approach for fabrication superhydrophobic and UV-blocking cotton fabrics with self-cleaning properties. Fibers Polym. 2021, 22 (4), 1033–1040. https://doi.org/10.1007/s12221-021-0648-z
Tang, B.; Lin, X.; Zou, F.; Fan, Y.; Li, D.; Zhou, J.; Chen, W.; Wang, X. In situ synthesis of gold nanoparticles on cotton fabric for multifunctional applications. Cellulose. 2017, 24 (10), 4547–4560. https://doi.org/10.1007/s10570-017-1413-8
Thi, V. H. T.; Lee, B.-K. Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. J. Photochem. Photobiol. A Chem. 2017, 338, 13–22. https://doi.org/10.1016/j.jphotochem.2017.01.020
Tian, M.; Hu, X.; Qu, L.; Du, M.; Zhu, S.; Sun, Y.; Han, G. Ultraviolet protection cotton fabric achieved via layer-by-layer self-assembly of graphene oxide and chitosan. Appl. Surf. Sci. 2016, 377, 141–148. https://doi.org/10.1016/j.apsusc.2016.03.183
Tiwari, S. K.; Mishra, R. K.; Ha, S. K.; Huczko, A. Evolution of graphene oxide and graphene: From imagination to industrialization. Chem. Nano. Mat. 2018, 4 (7), 598–620. https://doi.org/10.1002/cnma.201800089
Varesano, A.; Tonin, C. Improving electrical performances of wool textiles: Synthesis of conducting polypyrrole on the fiber surface. Text. Res. J. 2008, 78 (12), 1110–1115. https://doi.org/10.1177/0040517507077488
Vatansever, F.; Hamblin, M. R. Far infrared radiation (FIR): Its biological effects and medical applications. Photon. Lasers Med. 2012, 1 (4), 255–266. https://doi.org/10.1515/plm-2012-0034
Velasco, M. V. R.; Sarruf, F. D.; Salgado-Santos, I. M. N.; Haroutiounian-Filho, C. A.; Kaneki, T. M.; Baby, A. R. Broad spectrum bioactive sunscreens, Int. J. Pharm. 2008, 363 (1–2), 50–57. https://doi.org/10.1016/j.ijpharm.2008.06.031
Wang, S. Q.; Balagula, Y.; Osterwalder, U. Photoprotection: A review of the current and future technologies. Dermatol. Ther. 2010, 23 (1), 31–47. https://doi.org/10.1111/j.1529-8019.2009.01289.x
Wang, L.; Zhao, J.; Liu, H.; Huang, J. Design, modification and application of semiconductor photocatalysts. J. Taiwan Inst. Chem. 2018, 93, 590–602. https://doi.org/10.1016/j.jtice.2018.09.004
Wang, X.; Chen, X.; Cowling, S.; Wang, L.; Liu, X. Polymer brushes tethered ZnO crystal on cotton fiber and the application on durable and washable UV protective clothing. Adv. Mater. Interfaces. 2019, 6 (14), 1900564. https://doi.org/10.1002/admi.201900564
Wang, S.-D.; Wang, K.; Ma, Q.; Qu, C.-X. Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Mater. Today Commun. 2020, 23, 100893. https://doi.org/10.1016/j.mtcomm.2020.100893
Wang, H.; Memon, H. Cotton science and processing technology: Gene, ginning, garment and green recycling; Springer, 2020.
Xu, L.; Shen, Y.; Ding, Y.; Wang, L. Superhydrophobic and ultraviolet-blocking cotton fabrics based on TiO2/SiO2 composite nanoparticles. J. Nanosci. Nanotechnol. 2018, 18 (10), 6879–6886. https://doi.org/10.1166/jnn.2018.15463
Xue, C.-H.; Yin, W.; Jia, S.-T.; Ma, J.-Z. UV-durable superhydrophobic textiles with UV-shielding properties by coating fibers with ZnO/SiO2 core/shell particles. Nanotechnology. 2011, 22 (41), 415603. https://doi.org/10.1088/0957-4484/22/41/415603
Xue, C.-H; Yin, W.; Zhang, P.; Zhang, J.; Ji, P.-T.; Jia, S.-T. UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 427, 7–12. https://doi.org/10.1016/j.colsurfa.2013.03.021
Yadav, H. M.; Kim, J.-S.; Pawar, S. H. Developments in photocatalytic antibacterial activity of nano TiO2: A review. Korean J. Chem. Eng. 2016, 33 (7), 1989–1998 https://doi.org/10.1007/s11814-016-0118-2
Yildirim, K.; Kanber, A.; Karahan, M.; Karahan, N. The solar properties of fabrics produced using different weft yarns. Text. Res. J. 2000, 88 (13), 1543–1558. https://doi.org/10.1016/S1359-835X(99)00081-0
Yue Y.; Zhou, C.; French, A. D.; Xia, G.; Han, G.; Wang, Q.; Wu, Q. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose. 2012, 19 (4), 1173–1187. https://doi.org/10.1007/s10570-012-9714-4
Zhang, D.; Chen, L.; Fang, D.; Toh, G. W.; Yue, X.; Chen, Y.; Lin, H. In situ generation and deposition of nano-ZnO on cotton fabric by hyperbranched polymer for its functional finishing. Text. Res. J. 2013, 83 (15), 1625–1633. https://doi.org/10.1177/0040517512474362
Zhang, K.; Yang, Z.; Mao, X.; Chen, X.-L.; Li, H.-H.; Wang, Y.-Y. Multifunctional textiles/metal-organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl. Mater. Interfaces. 2020, 12 (49), 55316–55323. https://doi.org/10.1021/acsami.0c18147
Zhao, Y.; Xu, Z.; Wang, X.; Lin, T. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Appl. Surf. Sci. 2013, 286, 364–370. https://doi.org/10.1016/j.apsusc.2013.09.092
Zhou, S.; Wang, F.; Balachandran, S.; Li, G.; Zhang, X.; Wang, R.; Liu, P.; Ding, Y.; Zhang, S.; Yang, M. Facile fabrication of hybrid PA6-decorated TiO2 fabrics with excellent photocatalytic, anti-bacterial, UV light-shielding, and super hydrophobic properties. RSC Adv. 2017, 7 (83), 52375–52381. https://doi.org/10.1039/C7RA09613E
Zohoori, S.; Payvandy, P.; Bekrani, M. Antibacterial, self-cleaning and UV blocking of wool fabric coated with nano Ce/ZnO and Ce/TiO2. Indian J. Fibre Text. Res. 2021, 46 (1), 57–62. https://doi.org/10.56042/ijftr.v46i1.25171

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Eclética Química