Voltammetric glassy carbon sensor approach for the extended stability studies of doxorubicin in lyophilized dosage form
PDF
EPUB

Keywords

electrochemistry
quality control of medicines
analytical validation
voltammetry
anticancer drugs

How to Cite

Cunha, C. E. P., Rodrigues, E. S. B., Oliveira Neto, J. R. de . ., Somerset, V., Taveira, S., Sgobbi, L. F., & Gil, E. de S. (2022). Voltammetric glassy carbon sensor approach for the extended stability studies of doxorubicin in lyophilized dosage form. Eclética Química, 47(3), 32–38. https://doi.org/10.26850/1678-4618eqj.v47.3.2022.p32-38

Abstract

Doxorubicin (DOX) is an anthracycline antibiotic that is widely used in the clinical treatment of cancer patients. DOX has a high market value. Electroanalytical methods for DOX analysis are an alternative and promising approach compared to chromatographic techniques. In this context, electroanalysis provides a low-cost method for determining drugs such as DOX lyophilized powder for the injection. Differential pulse voltammetry with a glassy carbon electrode was used. DOX stability after reconstitution was performed, and the correct time for safe administration to patients in hospitals was determined. The electroanalytical method showed a limit of detection of 0.54 µmol L‑1 and limit of quantification of 1.83 µmol L–1, which is enough for the application in quality control of DOX. The high-performance liquid chromatography analysis was also applied in pharmaceutical samples containing DOX to compare with the proposed method, showing that the obtained results are relatively similar for both methods. Therefore, the electroanalytical approach shows the viability of an attractive alternative technique for applying this sensor for drug quality control.

https://doi.org/10.26850/1678-4618eqj.v47.3.2022.p32-38
PDF
EPUB

References

ACS Publications Home Page. 2019. https://pubs.acs.org/ (accessed 2019-02-21).

Alhareth, K.; Vauthier, C.; Gueutin, C.; Ponchel, G.; Moussa, F. HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J. Chromatogr. B Biomed. Appl. 2012, 887–888, 128–132. https://doi.org/10.1016/j.jchromb.2012.01.025

Cunha, C. E. P.; Rodrigues, E. S. B.; Alecrim, M. F.; Thomaz, D. V.; Macêdo, I. Y. L.; Garcia, L. F.; Oliveira Neto, J. R.; Moreno, E. K. G.; Ballaminut, N.; Gil, E. de S. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals. 2019, 12 (2), 83. https://doi.org/10.3390/ph12020083

Deepa, S.; Swamy, B. E. K.; Pai, K. P. Voltammetric detection of anticancer drug Doxorubicin at pencil graphite electrode: A voltammetric study. Sensors International 2020, 1, 100033. https://doi.org/10.1016/j.sintl.2020.100033

Felix, F. S.; Angnes, L. Electrochemical immunosensors – A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. https://doi.org/10.1016/j.bios.2017.11.029

Hahn, Y.; Lee, H. Y. Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch. Pharm. Res. 2004, 27 (1), 31–34. https://doi.org/10.1007/BF02980041

Hajian, R.; Tayebi, Z.; Shams, N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J. Pharm. Anal. 2017, 7 (1), 27–33. https://doi.org/10.1016/j.jpha.2016.07.005

ICH Harmonized Tripartite Guideline. Validation of analytical procedures: text and methodology (Q2) R1. Current Step 4. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. 2014. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed 2021-02-28).

Li, D.; Xu, Y.; Fan, L.; Shen, B.; Ding, X.; Yuan, R.; Li, X.; Chen, W. Target-Driven Rolling Walker Based Electrochemical Biosensor for Ultrasensitive Detection of Circulating Tumor DNA Using Doxorubicin@tetrahedron-Au Tags. Biosens. Bioelectron. 2020, 148, 111826. https://doi.org/10.1016/j.bios.2019.111826

Macêdo, I. Y. L.; Alecrim, M. F.; Oliveira Neto, J. R.; Torres, I. M. S.; Thomaz, D. V.; Gil, E. S. Piroxicam voltammetric determination by ultra low cost pencil graphite electrode. Braz. J. Pharm. Sci. 2020, 56, e17344. https://doi.org/10.1590/s2175-97902019000317344

Navas, N.; Herrera, A.; Martínez-Ortega, A.; Salmerón-García, A.; Cabeza, J.; Cuadros-Rodríguez, L. Quantification of an intact monoclonal antibody, rituximab, by (RP)HPLC/DAD in compliance with ICH guidelines. Anal. Bioanal. Chem. 2013, 405 (29), 9351–9363. https://doi.org/10.1007/s00216-013-7368-1

Piovesan, J. V.; Spinelli, A. Determination of Quercetin in a Pharmaceutical Sample by Square-Wave Voltammetry Using a Poly(vinylpyrrolidone)-Modified Carbon-Paste Electrode. J. Braz. Chem. Soc. 2014, 25 (3), 517–525. https://doi.org/10.5935/0103-5053.20140019

Radi, A. Anodic voltammetric assay of lansoprazole and omeprazole on a carbon paste electrode. Pharm. Biomed. Anal. 2003, 31 (5), 1007–1012. https://doi.org/10.1016/S0731-7085(02)00707-0

Rodrigues, E. S. B.; Macêdo, I. Y. L.; Lima, L. L. S.; Thomaz, D. V.; Cunha, C. E. P.; Oliveira, M. T.; Ballaminut, N.; Alecrim, M. F.; Carvalho, M.F.; Isecke, B. G.; Leite, K. C. S.; Machado, F. B.; Guimarães, F. F.; Menegatti, R.; Somerset, V.; Gil, E. S. Electrochemical Characterization of Central Action Tricyclic Drugs by Voltammetric Techniques and Density Functional Theory Calculations. Pharmaceuticals 2018, 12 (3), 116 https://doi.org/10.3390/ph12030116

Shah, M.; Bourner, L.; Ali, S.; Al-Enazy, S.; Youssef, M. M.; Fisler, M.; Rytting, E. HPLC Method Development for Quantification of Doxorubicin in Cell Culture and Placental Perfusion Media. Separations. 2018, 5 (1), 9. https://doi.org/10.3390/separations5010009

Shellaiah, M.; Sun, K. W. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors. 2020, 8 (3), 55. https://doi.org/10.3390/chemosensors8030055

Skalová, Š.; Langmaier, J.; Barek, J.; Vyskočil, V.; Navrátil, T. Doxorubicin determination using two novel voltammetric approaches: A comparative study. Electrochim. Acta. 2020, 330, 135180. https://doi.org/10.1016/j.electacta.2019.135180

Thomaz, D. V.; Leite, K. C. de S.; Moreno, E. K. G.; Garcia, L. F.; Alecrim, M. F.; Macêdo, I. Y. L.; Caetano, M. P.; Carvalho, M. F.; Machado, F. B.; Gil, E. de S. Electrochemical Study of Commercial Black Tea Samples. Int. J. Electrochem. Sci. 2018, 13 (6), 5433–5439. https://doi.org/10.20964/2018.06.55

US Pharmacopeia (USP). Doxorubicin lyophilized powde. 2020. https://online.uspnf.com/uspnf/document/1_GUID-41785247-DA22-407F-B060-7182FDA4FD3A_3_en-US (accessed 2021-02-28).

Zhao, P.; Dash, A. K. A simple HPLC method using a microbore column for the analysis of doxorubicin. J. Pharm. Biomed. Anal. 1999, 20 (3), 543–548. https://doi.org/10.1016/S0731-7085(99)00070-9

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Eclética Química Journal

Metrics

PDF views
133
Jul 01 '22Jul 04 '22Jul 07 '22Jul 10 '22Jul 13 '22Jul 16 '22Jul 19 '22Jul 22 '22Jul 25 '22Jul 28 '223.0
| |
Other format views
14
Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20267.0
|