Voltammetric glassy carbon sensor approach for the extended stability studies of doxorubicin in lyophilized dosage form
Main Article Content
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic that is widely used in the clinical treatment of cancer patients. DOX has a high market value. Electroanalytical methods for DOX analysis are an alternative and promising approach compared to chromatographic techniques. In this context, electroanalysis provides a low-cost method for determining drugs such as DOX lyophilized powder for the injection. Differential pulse voltammetry with a glassy carbon electrode was used. DOX stability after reconstitution was performed, and the correct time for safe administration to patients in hospitals was determined. The electroanalytical method showed a limit of detection of 0.54 µmol L‑1 and limit of quantification of 1.83 µmol L–1, which is enough for the application in quality control of DOX. The high-performance liquid chromatography analysis was also applied in pharmaceutical samples containing DOX to compare with the proposed method, showing that the obtained results are relatively similar for both methods. Therefore, the electroanalytical approach shows the viability of an attractive alternative technique for applying this sensor for drug quality control.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
ACS Publications Home Page. 2019. https://pubs.acs.org/ (accessed 2019-02-21).
Alhareth, K.; Vauthier, C.; Gueutin, C.; Ponchel, G.; Moussa, F. HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J. Chromatogr. B Biomed. Appl. 2012, 887–888, 128–132. https://doi.org/10.1016/j.jchromb.2012.01.025
Cunha, C. E. P.; Rodrigues, E. S. B.; Alecrim, M. F.; Thomaz, D. V.; Macêdo, I. Y. L.; Garcia, L. F.; Oliveira Neto, J. R.; Moreno, E. K. G.; Ballaminut, N.; Gil, E. de S. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals. 2019, 12 (2), 83. https://doi.org/10.3390/ph12020083
Deepa, S.; Swamy, B. E. K.; Pai, K. P. Voltammetric detection of anticancer drug Doxorubicin at pencil graphite electrode: A voltammetric study. Sensors International 2020, 1, 100033. https://doi.org/10.1016/j.sintl.2020.100033
Felix, F. S.; Angnes, L. Electrochemical immunosensors – A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. https://doi.org/10.1016/j.bios.2017.11.029
Hahn, Y.; Lee, H. Y. Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch. Pharm. Res. 2004, 27 (1), 31–34. https://doi.org/10.1007/BF02980041
Hajian, R.; Tayebi, Z.; Shams, N. Fabrication of an electrochemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J. Pharm. Anal. 2017, 7 (1), 27–33. https://doi.org/10.1016/j.jpha.2016.07.005
ICH Harmonized Tripartite Guideline. Validation of analytical procedures: text and methodology (Q2) R1. Current Step 4. International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use. 2014. https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed 2021-02-28).
Li, D.; Xu, Y.; Fan, L.; Shen, B.; Ding, X.; Yuan, R.; Li, X.; Chen, W. Target-Driven Rolling Walker Based Electrochemical Biosensor for Ultrasensitive Detection of Circulating Tumor DNA Using Doxorubicin@tetrahedron-Au Tags. Biosens. Bioelectron. 2020, 148, 111826. https://doi.org/10.1016/j.bios.2019.111826
Macêdo, I. Y. L.; Alecrim, M. F.; Oliveira Neto, J. R.; Torres, I. M. S.; Thomaz, D. V.; Gil, E. S. Piroxicam voltammetric determination by ultra low cost pencil graphite electrode. Braz. J. Pharm. Sci. 2020, 56, e17344. https://doi.org/10.1590/s2175-97902019000317344
Navas, N.; Herrera, A.; Martínez-Ortega, A.; Salmerón-García, A.; Cabeza, J.; Cuadros-Rodríguez, L. Quantification of an intact monoclonal antibody, rituximab, by (RP)HPLC/DAD in compliance with ICH guidelines. Anal. Bioanal. Chem. 2013, 405 (29), 9351–9363. https://doi.org/10.1007/s00216-013-7368-1
Piovesan, J. V.; Spinelli, A. Determination of Quercetin in a Pharmaceutical Sample by Square-Wave Voltammetry Using a Poly(vinylpyrrolidone)-Modified Carbon-Paste Electrode. J. Braz. Chem. Soc. 2014, 25 (3), 517–525. https://doi.org/10.5935/0103-5053.20140019
Radi, A. Anodic voltammetric assay of lansoprazole and omeprazole on a carbon paste electrode. Pharm. Biomed. Anal. 2003, 31 (5), 1007–1012. https://doi.org/10.1016/S0731-7085(02)00707-0
Rodrigues, E. S. B.; Macêdo, I. Y. L.; Lima, L. L. S.; Thomaz, D. V.; Cunha, C. E. P.; Oliveira, M. T.; Ballaminut, N.; Alecrim, M. F.; Carvalho, M.F.; Isecke, B. G.; Leite, K. C. S.; Machado, F. B.; Guimarães, F. F.; Menegatti, R.; Somerset, V.; Gil, E. S. Electrochemical Characterization of Central Action Tricyclic Drugs by Voltammetric Techniques and Density Functional Theory Calculations. Pharmaceuticals 2018, 12 (3), 116 https://doi.org/10.3390/ph12030116
Shah, M.; Bourner, L.; Ali, S.; Al-Enazy, S.; Youssef, M. M.; Fisler, M.; Rytting, E. HPLC Method Development for Quantification of Doxorubicin in Cell Culture and Placental Perfusion Media. Separations. 2018, 5 (1), 9. https://doi.org/10.3390/separations5010009
Shellaiah, M.; Sun, K. W. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors. 2020, 8 (3), 55. https://doi.org/10.3390/chemosensors8030055
Skalová, Š.; Langmaier, J.; Barek, J.; Vyskočil, V.; Navrátil, T. Doxorubicin determination using two novel voltammetric approaches: A comparative study. Electrochim. Acta. 2020, 330, 135180. https://doi.org/10.1016/j.electacta.2019.135180
Thomaz, D. V.; Leite, K. C. de S.; Moreno, E. K. G.; Garcia, L. F.; Alecrim, M. F.; Macêdo, I. Y. L.; Caetano, M. P.; Carvalho, M. F.; Machado, F. B.; Gil, E. de S. Electrochemical Study of Commercial Black Tea Samples. Int. J. Electrochem. Sci. 2018, 13 (6), 5433–5439. https://doi.org/10.20964/2018.06.55
US Pharmacopeia (USP). Doxorubicin lyophilized powde. 2020. https://online.uspnf.com/uspnf/document/1_GUID-41785247-DA22-407F-B060-7182FDA4FD3A_3_en-US (accessed 2021-02-28).
Zhao, P.; Dash, A. K. A simple HPLC method using a microbore column for the analysis of doxorubicin. J. Pharm. Biomed. Anal. 1999, 20 (3), 543–548. https://doi.org/10.1016/S0731-7085(99)00070-9