Influence of structural disorder on the photocatalytic properties of ZnS nanocrystals prepared by the one-pot solvothermal approach
Main Article Content
Abstract
This study focuses on the impact of the sulfur vacancies on the photocatalytic response of the ZnS nanocrystals synthesized by solvothermal method varying the concentration of zinc acetate/thiourea precursors. XRD patterns show that these samples have a hexagonal structure with different degrees of crystallinity, varying the crystallite size from 2.48 to 2.85 nm. The UV-Vis data reveals an absorption peak (at about 320 nm) characteristic of ZnS nanocrystals. As a result, a decrease in the bandgap value of these materials was observed from 3.78 to 3.62 eV. In principle, a comparison of these results and theoretical calculations reveals the formation of intermediate levels inside the bandgap due to structural polarization. These findings also corroborate the zeta potential measured for these samples, evidenced by an increase of positive charge of ZnS surfaces. Also, the low Miller-index surfaces, such as (100), (110) and (0001), were investigated by periodic density functional theory calculations, in nice agreement with the experimental data. A photocatalysis mechanism was investigated and confirmed the formation of reactive oxygen species.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2019/08928-9;2013/07296-2 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 304604/2018-6;307213/2021-8 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 88887.467334/2019-00
References
Amorin, L. H.; Suzuki, V. Y.; Paula, N. H.; Duarte, J. L.; Silva, M. A. T, Taft, C. A.; La Porta, F. A. Electronic, structural, optical, and photocatalytic properties of graphitic carbon nitride. New J. Chem. 2019, 43 (34), 13647–13653. https://doi.org/10.1039/C9NJ02702E
Ayala-Durán, S. C.; Hammer, P.; Nogueira, R. F. P. Surface composition and catalytic activity of an iron mining residue for simultaneous degradation of sulfonamide antibiotics. Environ. Sci. Pollut. Res. 2020, 27, 1710-1720. https://doi.org/10.1007/s11356-019-06662-1
Ayodhya, D.; Veerabhadram, G. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater. Today Energy 2018, 9, 83-113. https://doi.org/10.1016/j.mtener.2018.05.007
Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H. M. N. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. Environ. Int. 2019, 124, 336-353. https://doi.org/10.1016/j.envint.2019.01.011
Byrne, C.; Subramanian, G.; Pillai, S. C. Recent advances in photocatalysis for environmental applications. J. Environ. Chem. Eng. 2018, 6, 3531-3555. https://doi.org/10.1016/j.jece.2017.07.080
Calandra, P.; Goffredi, M.; Liveri, V. T. Study of the growth of ZnS nanoparticles in water/AOT/nheptane microemulsions by UV-absorption spectroscopy. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 160, 9-13. https://doi.org/10.1016/S0927-7757(99)00256-3
Chen, D.; Huang, F.; Ren, G.; Li, D.; Zheng, M.; Wang, Y.; Lin, Z. ZnS nano-architectures: Photocatalysis, deactivation and regeneration. Nanoscale 2010, 2, 2062-2064. https://doi.org/10.1039/c0nr00171f
Chen, S.; Shen, S.; Liu, G.; Qi, Y.; Zhang, F.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light- Irradiation. Angew. Chemie - Int. Ed. 2015, 54, 3047-3051. https://doi.org/10.1002/anie.201409906
Chen, K.; Tang, W.; Chen, Y.; Yuan, R.; Lv, Y.; Shan, W.; Zhang, W. H. A facile solution processed ZnO@ZnS core-shell nanorods arrays for high-efficiency perovskite solar cells with boosted stability. J. Energy Chem. 2021, 61, 553-560. https://doi.org/10.1016/j.jechem.2021.02.018
Dovesi, R.; Saunders, V. R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C. M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N. M.; Bush, I. J.; D'Arco, P.; Llunell, M.; Causà, M.; Noël, Y.; Maschio, L.; Erba, A.; Rerat, M.; Casassa, S. C. CRYSTAL17 User's Manual. Univ. Torino, Torino (2017).
El-Sayed, M. A. Small Is Different: Shape-, Size-, and Composition-Dependent Properties of Some Colloidal Semiconductor Nanocrystals. Acc. Chem. Res. 2004, 37 (5), 326-333. https://doi.org/10.1021/ar020204f
Guinier, A., Lorrain, P., Lorrain, D. S.; Gillis, J. X‐Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. Phys. Today 1964, 17, 70-72. https://doi.org/10.1063/1.3051547
Hamad, S.; Cristol, S.; Catlow, C. R. A. Surface structures and crystal morphology of ZnS: Computational study. J. Phys. Chem. B 2002, 106, 11002-11008. https://doi.org/10.1021/jp026396d
Heller, L.; Mota, C. R.; Greco, D. B. COVID-19 faecal-oral transmission: Are we asking the right questions? Sci. Total Environ. 2020, 729, 138919. https://doi.org/10.1016/j.scitotenv.2020.138919
Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu 2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. J. Am. Chem. Soc. 2012, 134, 1261- 1267. https://doi.org/10.1021/ja209662v
Hussain, S.; Liu, T.; Javed, M. S.; Aslam, N.; Zeng, W. Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties. Sens. Actuators B Chem. 2017, 239, 1243-1250. https://doi.org/10.1016/j.snb.2016.09.128
Ippen, C.; Greco, T.; Kim, Y.; Kim, J.; Suk, M.; Jong, C.; Wedel, A. ZnSe / ZnS quantum dots as emitting material in blue QD-LEDs with narrow emission peak and wavelength tunability. Org. Electron. 2014, 15, 126-131. https://doi.org/10.1016/j.orgel.2013.11.003
Jellison, G. E.; Wood, R. F. Antireflection coatings for planar silicon solar cells. Solar Cells 1986, 18, 93-114. https://doi.org/10.1016/0379-6787(86)90029-3
Jesus, J. P. A.; Jimenez, M. Z.; La Porta, F. de A. Theoretical investigation on the effects of electric field on the electronic structure and spectroscopic properties of Zn6−xCdxS6 clusters as model systems of semiconductor quantum dots. Comput. Mater. Sci. 2021, 188, 110147. https://doi.org/10.1016/j.commatsci.2020.110147
Kröger, F. A.; Vink, H. J. Relations between the Concentrations of Imperfections in Crystalline Solids. Solid State Phys. 1956, 3, 307-435. https://doi.org/10.1016/S0081-1947(08)60135-6
Kuznetsova, Y. V.; Kazantseva, A. A.; Rempel, A. A. Zeta Potential, Size, and Semiconductor Properties of Zinc Sulfide Nanoparticles in a Stable Aqueous Colloid Solution. Russ. J. Phys. Chem. A 2016, 90, 864-869. https://doi.org/10.1134/S0036024416040154
La Porta, F. A.; Ferrer, M. M.;Santana, Y. V. B.; Raubach, C. W.; Longo, V. M.; Sambrano, J. R.; Longo, E.; Andrés, J.; Li, M. S.; Varela, J. A. Towards an Understanding on the Role of Precursor in the Synthesis of ZnS Nanostructures. Curr. Phys. Chem. 2013a, 3(4), 378-385. https://doi.org/10.2174/18779468113036660012
La Porta, F. A.; Ferrer, M. M.; De Santana, Y. V. B.; Raubach, C. W.; Longo, V. M.; Sambrano, J. R.; Longo, E.; Andrés, J.; Li, M. S.; Varela, J. A. Synthesis of Wurtzite ZnS Nanoparticles Using the Microwave Assisted Solvothermal Method. J. Alloys Compd. 2013b, 556, 153-159. https://doi.org/10.1016/j.jallcom.2012.12.081
La Porta, F. A.; Andrés, J.; Li, M. S.; Sambrano, J. R.; Varela, J. A.; Longo, E. Zinc Blende versus Wurtzite ZnS Nanoparticles: Control of the Phase and Optical Properties by Tetrabutylammonium Hydroxide. Phys. Chem. Chem. Phys. 2014a, 16 (37), 20127-20137. https://doi.org/10.1039/C4CP02611J
La Porta, F. A.; Gracia, L.; Andrés, J.; Sambrano, J. R.; Varela, J. A.; Longo, E. A DFT Study of Structural and Electronic Properties of ZnS Polymorphs and Its Pressure-Induced Phase Transitions. J. Am. Ceram. Soc. 2014b, 97 (12), 4011-4018. https://doi.org/10.1111/jace.13191
La Porta, F. A.; Nogueira, A. E.; Gracia, L.; Pereira, W. S.; Botelho, G.; Mulinari, T. A.; Andrés, J.; Longo, E. An Experimental and Theoretical Investigation on the Optical and Photocatalytic Properties of ZnS Nanoparticles. J. Phys. Chem. Solids 2017, 103, 179-189. https://doi.org/10.1016/j.jpcs.2016.12.025
Lee, G.; Wu, J. J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications - A review. Powder Technol. 2017, 318, 8-22. https://doi.org/10.1016/j.powtec.2017.05.022
Li, J.; Wu, Q.; Wu, J. Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham., 2016, 265-293. https://doi.org/10.1007/978-3-319-15338-4
Lin, Z. Q.; Wang, G. G.; Li, L. H.; Wang, H.; Tian, J. L.; Zhang, H. Y.; Han, J. C. Preparation and Protection of ZnS Surface Sub-Wavelength Structure for Infrared Window. Appl. Surf. Sci. 2019, 470, 395-404. https://doi.org/10.1016/j.apsusc.2018.11.156
Liqiang, J.; Yichun, Q.; Baiqi, W.; Shudan, L.; Baojiang, J.; Libin, Y.; Wei, F.; Honggang, F.; Jiazhong, S. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells 2006, 90, 1773-1787. https://doi.org/10.1016/j.solmat.2005.11.007
Lorber, B.; Fischer, F.; Bailly, M.; Roy, H.; Kern, D. Protein analysis by dynamic light scattering: Methods and techniques for students. Biochem. Mol. Biol. Educ. 2012, 40, 372-382. https://doi.org/10.1002/bmb.20644
Meng, X.; Xiao, H.; Wen, X.; Goddard, W. A.; Li, S.; Qin, G. Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: First-principles calculations. Phys. Chem. Chem. Phys. 2013, 15, 9531-9539. https://doi.org/10.1039/c3cp50330e
Mukherjee, S.; Selvaraj, J.; Paramasivam, T. Ag-Doped ZnInS/ZnS Core/Shell Quantum Dots for Display Applications. ACS Appl. Nano Mater. 2021, 4, 10228-10243. https://doi.org/10.1021/acsanm.1c01720
Pereira, W. da S.; Sczancoski, J. C.; Calderon, Y. N. C.; Mastelaro, V. R.; Botelho, G.; Machado, T. R.; Leite, E. R.; Longo, E. Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag 3-2x Cu x PO 4 powders. Appl. Surf. Sci. 2018, 440, 61-72. https://doi.org/10.1016/j.apsusc.2017.12.202
Santana, Y. V. B.; Raubach, C. W.; Ferrer, M. M.; La Porta, F. A.; Sambrano, J. R.; Longo, V. M.; Leite, E. R.; Longo, E. Experimental and theoretical studies on the enhanced photoluminescence activity of zinc sulfide with a capping agent. J. Appl. Phys. 2011, 110, 123507. https://doi.org/10.1063/1.3666070
Sousa, G. S.; Nobre, F. X.; Araújo Júnior, E. A.; Sambrano, J. R.; Albuquerque, A. dos R.; Bindá, R. dos S.; Couceiro, P. R. da C.; Brito, W. R.; Cavalcante, L. S.; Santos, M. R. de M. C.; Matos, J. M. E. Hydrothermal synthesis, structural characterization and photocatalytic properties of β-Ag2MoO4 microcrystals: Correlation between experimental and theoretical data. Arab. J. Chem. 2020, 13, 2806-2825. https://doi.org/10.1016/j.arabjc.2018.07.011
Stetefeld, J.; McKenna, S. A.; Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409-427. https://doi.org/10.1007/s12551-016-0218-6
Su, D.; Dou, S.; Wang, G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li-o2 batteries. Sci. Rep. 2014, 4, 5767. https://doi.org/10.1038/srep05767
Sultana, A.; Middya, T. R.; Mandal, D. ZnS-paper based flexible piezoelectric nanogenerator. AIP Conf. Proc. 2018, 1942, 120018. https://doi.org/10.1063/1.5029058
Suryanarayana, C., Norton, M. G. Practical Aspects of X-Ray Diffraction. In: X-Ray Diffraction. Springer 1998, 63-94. https://doi.org/10.1007/978-1-4899-0148-4_3
Suzuki, V. Y.; Amorin, L. H. C.; Lima, N. M.; Machado, E. G.; Carvalho, P. E.; Castro, S. B. R.; Alves, C. C. S.; Carli, A. P.; Li, M. S.; Longo, E.; La Porta, F. A. Characterization of the Structural, Optical, Photocatalytic and: In Vitro and in Vivo Anti-Inflammatory Properties of Mn2+ Doped Zn2GeO4 Nanorods. J. Mater. Chem. C 2019a, 7 (27), 8216-8225. https://doi.org/10.1039/c9tc01189g
Suzuki, V. Y.; Paula, N. H.; Gonçalves, R.; Li, M. S.; Pereira, E. C.; Longo, E.; La Porta, F. A. Exploring Effects of Microwave-Assisted Thermal Annealing on Optical Properties of Zn2GeO4 Nanostructured Films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019b, 246, 7-12. https://doi.org/10.1016/j.mseb.2019.05.023
Suzuki, V. Y.; Amorin, L. H. C.; de Paula, N. H.; Albuquerque, A. R.; Li, M. S.; Sambrano, J. R.; Longo, E.; La Porta, F. A. New Insights into the Nature of the Bandgap of CuGeO3 Nanofibers: Synthesis, Electronic Structure, and Optical and Photocatalytic Properties. Mater. Today Commun. 2021, 26, 101701. https://doi.org/10.1016/j.mtcomm.2020.101701
Talapin, D. V; Mekis, I.; Go, S.; Kornowski, A.; Benson, O.; Weller, H. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core-Shell-Shell Nanocrystals. J. Phys. Chem. B 2004, 108 (49), 18826-18831. https://doi.org/10.1021/jp046481g
Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110 (1), 389-458. https://doi.org/10.1021/cr900137k
Wang, X.; Shi, J.; Feng, Z.; Li, M.; Li, C. Visible Emission Characteristics from Different Defects of ZnS Nanocrystals. Phys. Chem. Chem. Phys. 2011, 13 (10), 4715-4723. https://doi.org/10.1039/c0cp01620a
Wang, P.; Wu, Z.; Wu, M.; Wei, J.; Sun, Y.; Zhao, Z. All-Solution-Processed, Highly Efficient and Stable Green Light-Emitting Devices Based on Zn-Doped CsPbBr3/ZnS Heterojunction Quantum Dots. J. Mater. Sci. 2021, 56 (6), 4161-4171. https://doi.org/10.1007/s10853-020-05527-0
Xiao, J.; Song, C.; Song, M.; Dong, W.; Li, C.; Yin, Y. Preparation and Gas Sensing Properties of Hollow ZnS Microspheres. J. Nanosci. Nanotechnol. 2016, 16 (3), 3026-3029. https://doi.org/10.1166/jnn.2016.10765
Yoffe, A. D. Semiconductor Quantum Dots and Related Systems: Electronic, Optical, Luminescence and Related Properties of Low Dimensional Systems. Adv. Phys. 2001, 50 (1), 1-208. https://doi.org/10.1080/00018730010006608
Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Graphene Transforms Wide Band Gap ZnS to a Visible Light Photocatalyst. the New Role of Graphene as a Macromolecular Photosensitizer. ACS Nano 2012, 6 (11), 9777-9789. https://doi.org/10.1021/nn304154s
Zhang, Z.; She, J.; Chen, H.; Deng, S.; Xu, N. Laser-Induced Doping and Fine Patterning of Massively Prepared Luminescent ZnS Nanospheres. J. Mater. Chem. C 2013, 1 (32), 4970-4978. https://doi.org/10.1039/c3tc30714j
Ziegler, B. J.; Xu, S.; Kucur, E.; Meister, F.; Batentschuk, M.; Gindele, F.; Nann, T. Silica-Coated InP/ZnS Nanocrystals as Converter Material in White LEDs. Adv. Mater. 2008, 20 (21), 4068-4073. https://doi.org/10.1002/adma.200800724