Analysis of the Pb0.30CaxSryTiO3 ternary system: The effect of Ca2+ and Sr2+ cations on the electrical properties of PbTiO3

Main Article Content

Amanda Fernandes Gouveia
Lara Kelly Ribeiro
Marcelo Assis
Elson Longo
Juan Andrés
Fenelon Martinho Lima Pontes

Abstract

Powder and thin films of the Pb0.30Ca0.10Sr0.60TiO3 (PCST 30/10/60) and Pb0.30Ca0.60Sr0.10TiO3 (PCST 30/60/10) ternary system were synthetized by the polymeric precursor method and the thin films deposited on the Si/SiO2/Ti/Pt substrate. The effects of the Sr2+ and Ca2+ cations substitutions on the electrical and structural properties of the PbTiO3 were characterized by X-ray diffraction, Infrared, and Raman spectroscopy. Theoretical calculations were performed using the CRYSTAL06 program associated with the density functional theory and the B3LYP functional hybrid. Structural and electronic properties of the system were analyzed. The band gap values calculated for the PCST 30/10/60 and PCST 30/60/10 models were 3.35 and 3.41 eV, respectively. The results showed an evolution to a greater symmetry in the direction to the cubic SrTiO3 structure and the phase transition was characterized by the Curie temperature dependence. The broad bands above FE-PE phase transition temperature suggest a phase transition diffuse type. It is explained by a local symmetry disorder due to a higher Sr2+ and Ca2+ cations concentration in the PbTiO3 host lattice.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gouveia, A. F., Ribeiro, L. K., Assis, M., Longo, E., Andrés, J., & Pontes, F. M. L. (2022). Analysis of the Pb0.30CaxSryTiO3 ternary system: The effect of Ca2+ and Sr2+ cations on the electrical properties of PbTiO3. Eclética Química, 47(2SI), 100–109. https://doi.org/10.26850/1678-4618eqj.v47.2SI.2022.p100-109
Section
Original articles

Funding data

References

Ahmadi, F.; Araghi, H. Electro-optical and phonon properties of PbTiO3/CaTiO3/SrTiO3 ferroelectric superlattices: a first-principles calculation. J. Nanophotonics 2021, 15 (2), 026003. https://doi.org/10.1117/1.Jnp.15.026003

Becke, A. D. Density-Functional Thermochemistry. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. https://doi.org/10.1063/1.464913

Capeli, R. A.; Pontes, F. M. L.; Chiquito, A. J.; Bastos, W. B.; Pereira-da-Silva, M. A.; Longo, E. Annealing temperature dependence of local piezoelectric response of (Pb,Ca)TiO3 ferroelectric thin films. Ceram. Int. 2017, 43 (6), 5047–5052. https://doi.org/10.1016/j.ceramint.2017.01.015

Crawford, J. C. Ferroelectric-Piezoelectric Random Access Memory. IEEE Tran. Electron Devices. 1971, 18 (10), 951–958. https://doi.org/10.1109/T-ED.1971.17309

Daglish, M.; Kemmitt, T. Ferroelectric thin films – research, development and commercialization. IPENZ Transactions. 2000, 27 (1), 21–24. https://search.informit.org/doi/abs/10.3316/INFORMIT.185207029730394 (accessed 2022-05-18).

Dovesi, R.; Orlando, R.; Civalleri, B.; Roetti, C.; Saunders, V. R.; Zicovich-Wilson, C. M. CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z. Kristallogr. 2005, 220 (5–6), 571–573. https://doi.org/10.1524/zkri.220.5.571.65065

Eshita, T.; Tamura, T.; Arimoto Y. Ferroelectric random access memory (FRAM) devices. Advances in Non-Volatile Memory and Storage Technology. 2014, 434–454. https://doi.org/10.1533/9780857098092.3.434

Eshita, T.; Wang, W. S.; Nomura, K.; Nakamura, K.; Saito, H.; Yamaguchi, H.; Mihara, S.; Hikosaka, Y.; Kataoka, Y.; Kojima, M. Development of highly reliable ferroelectric random access memory and its Internet of Things applications. Jpn. J. Appl. Phys. 2018, 57, 11UA01. https://doi.org/10.7567/JJAP.57.11UA01

Han, S. T.; Zhou, Y.; Roy, V. A. L. Towards the Development of Flexible Non-Volatile Memories. Adv. Mater. 2013, 25 (38), 5425–5449. https://doi.org/10.1002/adma.201301361

Kim, K.; Lee, S. Integration of lead zirconium titanate thin films for high density ferroelectric random access memory. J. Appl. Phys. 2006, 100 (5), 051604. https://doi.org/10.1063/1.2337361

Kour, P.; Pradhan, S. K. Perovskite Ferroelectric. IntechOpen. 2021. https://doi.org/10.5772/intechopen.98382

Lázaro, S. R. D.; Longo, E.; Beltran, A.; Sambrano, J. R. Propriedades eletrônicas e estruturais do PbTiO3: teoria do funcional de densidade aplicada a modelos periódicos theory applied to periodic models. Quim. Nova. 2005, 28 (1), 10–18. https://doi.org/10.1590/S0100-40422005000100003

Leal, S. H.; Pontes, F. M. L.; Leite, E. R.; Longo, E.; Pizani, P. S.; Chiquito, A. J.; Machado, M. A. C.; Varela, J. A. Ferroelectric phase transition in Pb0.60Sr0.40TiO3 thin films. Mater. Chem. Phys. 2004, 87 (2–3), 353–356. https://doi.org/10.1016/j.matchemphys.2004.05.032

Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B. 1988, 37, 785–789. https://doi.org/10.1103/PhysRevB.37.785

Lee, J. D. Química Inorgânica não tão concisa. Blucher-São Paulo, 1999.

Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Synthesis and dynamic random access memory behavior of a functional polyimide. J. Amer. Chem. Soc. 2006, 128 (27), 8732–8733. https://doi.org/10.1021/ja062489n

Liu, X. D.; Zhang, D. C.; Zhang, Y.; Dai, X. T. Preparation and characterization of p-type semiconducting tin oxide thin film gas sensors. J. Appl. Phys. 2010, 107 (6), 064309. https://doi.org/10.1063/1.3354092

Longo, E.; Orhan, E.; Pontes, F. M. L.; Pinheiro, C. D.; Leite, E. R.; Varela, J. A.; Pizani, P. S.; Boschi, T. M.; Lanciotti, F.; Beltrán, A.; Andrés, J. Density functional theory calculation of the electronic structure of Ba0.5Sr0.5TiO3:Photoluminescent properties and structural disorder. Phys. Rev. B. 2004, 69, 125115. https://doi.org/10.1103/PhysRevB.69.125115

Mao, D.; Mejia, I.; Salas-Villasenor, A. L.; Singh, M.; Stiegler, H.; Gnade, B. E.; Quevedo-Lopez, M. A. Ferroelectric random access memory based on one-transistor-one-capacitor structure for flexible electronics. Org. Electron. 2013, 14 (2), 505–510. https://doi.org/10.1016/j.orgel.2012.10.035

Muller, G.; Nagel, N.; Pinnowa, C. U.; Rohr, T. Emerging non-volatile memory technologies. 29th European Solid-State Circuits Conference. Estoril, Portugal, 2003.

Pontes, D. S. L.; Leite, E. R.; Pontes, F. M. L.; Longo, E.; Varela, J. A. Microstructural, dielectric and ferroelectric properties of calcium-modified lead titanate thin films derived by chemical processes. J. Eur. Ceram. Soc. 2001a, 21 (8), 1107–1114. https://doi.org/10.1016/S0955-2219(00)00307-1

Pontes, D. S. L.; Leite, E. R.; Pontes, F. M. L.; Longo, E.; Varela, J. A. Preparation and properties of ferroelectric Pb1-xCaxTiO3 thin films produced by the polymeric precursor method. Journal of Materials Science. 2001b, 36 (14), 3461–3466. https://doi.org/10.1023/A:1017916213489

Pontes, F. M. L.; Leite, E. R.; Pontes, D. S. L.; Longo, E.; Santos, E. M. S.; Mergulhao, S.; Pizani, P. S.; Lanciotti, F.; Boschi, T. M.; Varela, J. A. Ferroelectric and optical properties of Ba0.8Sr0.2TiO3 thin film. J. Appl. Phys. 2002, 91 (9), 5972–5978. https://doi.org/10.1063/1.1466526

Pontes, F. M. L.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Santos, E. M. S.; Mergulhao, S.; Varela, J. A. Synthesis, ferroelectric and optical properties of (Pb,Ca)TiO3 thin films by soft solution processing. J. Sol-Gel Sci. Technol. 2003, 27 (2), 137–147. https://doi.org/10.1023/A:1023742315962

Pontes, F. M. L.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Machado, M. A. C.; Pizani, P. S.; Varela, J. A. A Raman and dielectric study of a diffuse phase transition in (Pb1-xCax)TiO3 thin films. Appl. Phys. A. 2004, 78 (3), 349–354. https://doi.org/10.1007/s00339-003-2287-1

Pontes, F. M. L.; Leal, S. H.; Leite, E. R.; Longo, E.; Pizani, P. S.; Chiquito, A. J.; Machado, M. A. C.; Varela, J. A. Absence of relaxor-like ferroelectric phase transition in (Pb,Sr)TiO3 thin films. Appl. Phys. A. 2005, 80 (4), 813–817. https://doi.org/10.1007/s00339-003-2490-0

Pontes, F. M. L.; Galhiane, M. S.; Santos, L. S.; Rissato, S. R.; Pontes, D. S. L.; Longo E.; Leite, E. R.; Chiquito, A. J.; Pizani, P. S.; Jardim, R. F.; Escote, M. T. Pressure-induced electrical and structural anomalies in Pb1-xCaxTiO3 thin films grown at various oxygen pressures by chemical solution route. J. Phys. D: Appl. Phys. 2008, 41 (11), 115402. https://doi.org/10.1088/0022-3727/41/11/115402

Pontes, D. S. L.; Pontes, F. M. L.; Capeli, R. A.; Garzim, M. L.; Chiquito, A. J.; Longo, E. Structural, ferroelectric, and optical properties of Pb0.60Ca0.20Sr0.20TiO3, Pb0.50Ca0.25Sr0.25TiO3 and Pb0.40Ca0.30Sr0.30TiO3 thin films prepared by the chemical solution deposition technique. Ceram. Int. 2014, 40 (8 Part B), 13363–13370. https://doi.org/10.1016/j.ceramint.2014.05.052

Souza, R. A. Transport properties of dislocations in SrTiO3 and other perovskites. Curr. Opin. Solid State Mater. Sci. 2021, 25 (4), 100923. https://doi.org/10.1016/j.cossms.2021.100923

Vopson, M. M.; Tan, X. Four-State Anti-Ferroelectric Random Access Memory. IEEE Electron Device Lett. 2016, 37 (12), 1551–1554. https://doi.org/10.1109/LED.2016.2614841

XCrySDen. X-window CRYstalline Structures and DENsities. 2019. http://www.xcrysden.org/ (accessed 2022-05-18).

Yang, C.; Xu, X. J.; Ali, W.; Wang, Y. J.; Wang, Y. P.; Yang, Y.; Chen, L.; Yuan, G. L. Piezoelectricity in Excess of 800 pC/N over 400 °C in BiScO3-PbTiO3-CaTiO3 Ceramics. ACS Appl. Mater. Interfaces. 2021, 13 (28), 33253–33261. https://doi.org/10.1021/acsami.1c07492

Yang, Y. H.; Wu, M.; Li, X. F.; Hu, H. H.; Jiang, Z. Z.; Li, Z.; Hao, X. T.; Zheng, C. Y.; Lou, X. J.; Pennycook, S. J.; Wen, Z. The Role of Ferroelectric Polarization in Resistive Memory Properties of Metal/Insulator/Semiconductor Tunnel Junctions: A Comparative Study. ACS Appl. Mater. Interfaces. 2020, 12 (29), 32935–32942. https://doi.org/10.1021/acsami.0c08708

Yuan, H.; Li, L.; Hong, H.; Ying, Z.; Zheng, X.; Zhang, L.; Wen, F.; Xu, Z.; Wu, W.; Wang, G. Low sintering temperature, large strain and reduced strain hysteresis of BiFeO3–BaTiO3 ceramics for piezoelectric multilayer actuator applications. Ceram. Int. 2021, 47 (22), 31349–31356. https://doi.org/10.1016/j.ceramint.2021.08.008

Zhang, S.; Li, Z.; Zhang, M.; Zhang, D.; Yan, Y. Enhanced piezoelectric properties of PYN-PHT ceramics by LiF addition in low temperature sintering. J. Alloys Compd. 2022, 889, 161649. https://doi.org/10.1016/j.jallcom.2021.161649

Zhao, T.-L.; Bokov, A. A.; Wu, J. G.; Wang, H. L.; Wang, C.-M.; Yu, Y.; Wang, C.-L.; Zeng, K. Y.; Ye, Z.-G.; Dong, S. X. Giant Piezoelectricity of Ternary Perovskite Ceramics at High Temperatures. Adv. Funct. Mater. 2019, 29 (12), 1807920. https://doi.org/10.1002/adfm.201807920