Sugarcane bagasse biochar pellets for removal of caffeine, norfloxacin, and ciprofloxacin in aqueous samples

Main Article Content

Mateus Cottorello Fonsêca
César Augusto Marasco Júnior
Diógenes dos Santos Dias
João Pedro da Silva
Rafaela Silva Lamarca
Clóvis Augusto Ribeiro
Lorena Oliveira Pires
Paulo Clairmont Feitosa Lima Gomes

Abstract

This work investigates the physicochemical properties of a biochar obtained from sugarcane bagasse by torrefaction at four different temperatures (260, 270, 280, and 290 °C), without chemical or physical activation. The biochar was characterized by thermogravimetric and proximate analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, together with measurements of point of zero charge, pH, elemental composition, and surface area. Evaluation regarding the efficiency of the biochar employed as an adsorbent for the removal of caffeine, ciprofloxacin, and norfloxacin in wastewater samples. The assays were performed in batch vessels filled with lab-made sewage spiked with caffeine at 5.00 µg L–1 and with ciprofloxacin and norfloxacin at 10.0 µg L–1. These compounds were studied separately. The thermogravimetry data demonstrated that increasing the torrefaction temperature led to generation of a greater amount of fixed carbon, as well as loss of volatile materials and removal of non-condensable compounds. This was corroborated by the FTIR analyses, where a higher temperature led to higher intensity of bands corresponding to methyl, methylene, and C=C bonds. The biochar produced at 280 °C presented the best stability, with adsorption efficiencies for removal from the lab-made sewage of 91% (norfloxacin), 81% (ciprofloxacin), and 58% (caffeine).

Metrics

Metrics Loading ...

Article Details

How to Cite
Fonsêca, M. C., Marasco Júnior, C. A., Dias, D. dos S., da Silva, J. P., Lamarca, R. S., Ribeiro, C. A., Pires, L. O., & Lima Gomes, P. C. F. (2022). Sugarcane bagasse biochar pellets for removal of caffeine, norfloxacin, and ciprofloxacin in aqueous samples. Eclética Química, 47(2), 82–96. https://doi.org/10.26850/1678-4618eqj.v47.2.2022.p82-96
Section
Original articles

Funding data

References

Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Johir, Md. A. H.; Sun, L.; Asadullah, M., Belhaj, D. Sorption of hydrophobic organic contaminants on functionalized biochar: Protagonist role of π-π electron-donor-acceptor interactions and hydrogen bonds. J. Hazard. Mater. 2018, 360, 270–278. https://doi.org/10.1016/j.jhazmat.2018.08.005

Ahmedna, M.; Johns, M. M.; Clarke, S. J.; Marshall, W. E.; Rao, R. M. Potential of agricultural by-product-based activated carbons for use in raw sugar decolourisation. J. Sci. Food Agric. 1997,75,117–124.https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<117::AID-JSFA850>3.0.CO;2-M

Al-Wabel, M. I.; Al-Omran, A.; El-Naggar, A. H.; Nadeem, M.; Usman, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165

Anastopoulos, I.; Katsouromalli, A.; Pashalidis, I. Oxidized biochar obtained from pine needles as novel adsorbent to remove caffeine from aqueous solutions. J. Mol. Liq. 2020, Article 112661. https://doi.org/10.1016/j.molliq.2020.112661

Becker, H.; de Matos, R. F.; de Souza, J. A.; Lima D. A.; de Souza, T. C.; Longhinotti, E. Pseudo-stem banana fibers: Characterization and chromium removal. Orbital: Electon. J. Chem. 2013, 5,164-170. https://doi.org/10.17807/orbital.v5i3.474

Binh, Q. A.; Nguyen, H. -H. Investigation the isotherm and kinetics of adsorption mechanism of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on corn cob biochar. Bioresor. Technol. Rep. 2020, 11, 100520. https://doi.org/10.1016/j.biteb.2020.100520

Buehrle, D. J.; Wagener, M. M.; Clancy, C. J. Outpatient Fluoroquinolone Prescription Fills in the United States, 2014 to 2020: Assessing the Impact of Food and Drug Administration Safety Warnings. Antimicrob. Agents Chemotherapy 2021, 65, e00151-21. https://doi.org/10.1128/AAC.00151-21

Buerge, I. J.; Poiger, T.; Müller, M. D.; Buser, H.-R. Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 2003, 37, 691-700. https://doi.org/10.1021/es020125z

BRAZIL. Ministry of Agriculture, Livestock and Supply. National Supply Company – CONAB. Acompanhamento da safra brasileira de cana-de-açúcar: v.7 - Safra 2020/21 n.4 - Quarto levantamento, 2021; pp 15.

Chen, J.; Zhang, D.; Zhang, H.; Ghosh, S.; Pan, B. Fast and slow adsorption of carbamazepine on biochar as affected by carbon structure and mineral composition. Sci. Total Environ. 2017, 579, 598–605. https://doi.org/10.1016/j.scitotenv.2016.11.052

Chen, W.-H.; Hsu, H.-J.; Kumar, G.; Budzianowski, W. M.; Ong, H. C. Predictions of biochar production and torrefaction performance from sugarcane bagasse using interpolation and regression analysis. Bioresour. Technol. 2017, 246, 12–19. https://doi.org/10.1016/j.biortech.2017.07.184

Correa-Navarro, Y. M.; Giraldo, L.; Moreno-Piraján, J. C. Biochar from fique bagasse for remotion of caffeine and diclofenac from aqueous solution. Molecules 2020, 25, Article 1849. https://doi.org/10.3390/molecules25081849

Dias, D. S.; Crespi, M. S.; Torquato, L. D. M.; Kobelnik, M.; Ribeiro, C. A. Torrefied banana tree fiber pellets having embedded urea for agricultural use. J. Therm. Anal. Calorim. 2018, 131, 705–712. https://doi.org/10.1007/s10973-016-6049-7

Granados, D. A.; Ruiz, R. A.; Vega, L. Y.; Chejne, F. Study of reactivity reduction in sugarcane bagasse as consequence of a torrefaction process. Energy 2017, 139, 818–827. https://doi.org/10.1016/j.energy.2017.08.013

Hafshejani, L. D.; Hooshmand, A.; Naseri, A. A.; Mohammadi, A. S.; Abbasi, F.; Bhatnagar, A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol. Eng. 2016, 95, 101–111. https://doi.org/10.1016/j.ecoleng.2016.06.035

Huang, W.; Chen, J.; Zhang, J. Removal of ciprofloxacin from aqueous solution by rabbit manure biochar. Environ. Technol. 2020, 41, 1380–1390. https://doi.org/10.1080/09593330.2018.1535628

Ibrahim, R.; Darvell, L. I.; Jones, J. M.; Williams, A. Physicochemical characterization of torrefied biomass. J. Anal. Appl. Pyrolysis 2013, 103, 21–30. https://doi.org/10.1016/j.jaap.2012.10.004

International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. 2.1, 2015; pp 61.

Inyang, M.; Dickenson, E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072

Jayaraman, K.; Gokalp, I.; Petrus, S.; Belandria, V.; Bostyn, S. Energy recovery analysis from sugar cane bagasse pyrolysis and gasification using thermogravimetry, mass spectrometry and kinetic models. J. Anal. Appl. Pyrolysis 2018, 132, 225–236. https://doi.org/10.1016/j.jaap.2018.02.003

Keiluweit, M.; Kleber, M. Molecular-level interactions in soils and sediments: The role of aromatic π-systems. Environ. Sci. Technol. 2009, 43, 3421–3429. https://doi.org/10.1021/es8033044

Li, L.; Yang, M.; Lu, Q.; Zhu, W.; Ma, H.; Dai, L. Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control. Bioresour. Technol. 2019, 294, Article 122142. https://doi.org/10.1016/j.biortech.2019.122142

Li, Z.; Wang, Z.; Wu, X.; Li, M.; Liu, X. Competitive adsorption of tylosin, sulfamethoxazole and Cu(II) on nano-hydroxyapatitemodified biochar in water. Chemosphere 2020, 240, Article 124884. https://doi.org/10.1016/j.chemosphere.2019.124884

Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar 2021, 3, 255-281. https://doi.org/10.1007/s42773-021-00101-6

Liu, X.; Liao, J.; Song, H.; Yang, Y.; Guan, C.; Zhang, Z. A Biochar-Based Route for Environmentally Friendly Controlled Release of Nitrogen: Urea-Loaded Biochar and Bentonite Composite. Sci. Rep. 2019, 9, 9548. https://doi.org/10.1038/s41598-019-46065-3

Ma, S.; Si, Y.; Wang, F.; Su, L.; Xia, C.; Yao, J.; Chen, H.; Liu, X. Interaction processes of ciprofloxacin with graphene oxide and reduced graphene oxide in the presence of montmorillonite in simulated gastrointestinal fluids. Sci. Rep. 2017, 7, 2588. https://doi.org/10.1038/s41598-017-02620-4

Marasco Júnior, C. A.; Luchiari, N. C.; Lima Gomes, P. C. F. Occurrence of caffeine in wastewater and sewage and applied techniques for analysis: a review. Eclética Quím. J. 2019, 44, 11-26. https://doi.org/10.26850/1678-4618eqj.v44.4.2019.p11-26

Marasco Júnior, C. A.; da Silva, B. F.; Lamarca, R. S.; Lima Gomes, P. C. F. Automated method to determine pharmaceutical compounds in wastewater samples using on-line solid phase extraction coupled to LC-MS/MS. Anal. Bional. Chem. 2021, 413, 5147–5160. https://doi.org/10.1007/s00216-021-03481-7

Mohanty, S. K.; Valenca, R.; Berger, A. W.; Yu, I. K. M.; Xiong, X.; Saunders, T. M.; Tsang, D. C. W. Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Sci. Total Environ. 2018, 625, 1644–1658. https://doi.org/10.1016/j.scitotenv.2018.01.037

Morais, L. C.; Maia, A. A. D.; Guandique, M. E. G.; Rosa, A. H. Pyrolysis and combustion of sugarcane bagasse. J. Therm. Anal. Calorim. 2017, 129,1813–1822. https://doi.org/10.1007/s10973-017-6329-x

Mubarik, S.; Athar, M. M.; Iqbal, M. Characterization and mechanism of the adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane baggase. J. Ind. Eng. Chem. 2015, 33, 115-121. https://doi.org/10.1016/j.jiec.2015.09.029

Oliveira, F. R.; Patel, A. K.; Jaisi, D. P.; Adhikari, S.; Lu, H.; Khanal, S. K. Environmental application of biochar: Current status and perspectives. Bioresour. Technol. 2017, 246, 110–122. https://doi.org/10.1016/j.biortech.2017.08.122

Osińska, A.; Harnisz, M.; Korzeniewska, E. Prevalence of plasmid-mediated multidrug resistance determinants in fluoroquinolone-resistant bacteria isolated from sewage and surface water. Environ. Sci. Pollut. Res. 2016, 23, 10818–10831. https://doi.org/10.1007/s11356-016-6221-4

Osonwa, U. E.; Ugochukwu, J. I.; Ajaegbu, E. E.; Chukwu, K. I.; Azevedo, R. B.; Esimone, C. O. Enhancement of antibacterial activity of ciprofloxacin hydrochloride by complexation with sodium cholate. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 233–237. https://doi.org/10.1016/j.bfopcu.2017.09.006

Pendolino, F. Self-assembly of molecules on nanostructured graphene. Thesis (Doctorate in Physical Sciences). Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 2014; pp 101.

Quéno, L. R. M.; Souza, A. N.; Costa, A. F.; Vale, A. T.; Joaquim, M. S. Aspectos técnicos da produção de pellets de madeira. Ciênc. Florest. 2019, 29(3), 1478-1489. https://doi.org/10.5902/1980509820606

Ramos, S. N. C.; Xavier, A. L. P.; Teodoro, F. S.; Gil, L. F.; Gurgel, L. V. A. Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: Mono- and multicomponent adsorption in batch mode. Ind. Crops Prod. 2016, 79, 116–130. https://doi.org/10.1016/j.indcrop.2015.10.035

Rangabhashiyam, S.; Balasubramanian, P. The potential of lignocellulosic biomass precursors for biochar production: Performance, mechanism and wastewater application - A review. Ind. Crops Prod. 2019, 128, 405–423. https://doi.org/10.1016/j.indcrop.2018.11.041

Regalbuto, J. R.; Robles, J. O. The engineering of Pt/Carbon catalyst preparation: for application on Proton Exchange Fuel Cell Membrane (PEFCM). University of Illinois, Chicago, USA, 2004.

Rodríguez-Díaz, J. M.; García, J. O. P.; Sánchez, L. R. B.; da Silva, M. G. C.; da Silva, V. L.; Arteaga-Pérez, L. E. Comprehensive characterization of sugarcane bagasse ash for its use as an adsorbent. BioEnergy Res. 2015, 8, 1885–1895. https://doi.org/10.1007/s12155-015-9646-6

SciFinder – ACS Solutions. Available in: https://scifinder.cas.org. Accessed 06/18/21.

Sun, J.; Sakai, S.; Tauchi, Y.; Deguchi, Y.; Chen, J.; Zhang, R.; Morimot, K. Determination of lipophilicity of two quinolone antibacterials, ciprofloxacin and grepafloxacin, in the protonation equilibrium. Eur. J. Pharm. Biopharm. 2002, 54, 51–8. https://doi.org/10.1016/S0939-6411(02)00018-8

Sun, L.; Chen, D.; Wan, S.; Yu, Z. Adsorption studies of dimetridazole and metronidazole onto biochar derived from sugarcane bagasse: Kinetic, equilibrium, and mechanisms. J. Polym. Environ. 2018, 26, 765–777. https://doi.org/10.1007/s10924-017-0986-5

Tag, A.; Duman, G.; Uçar, S.; Yanik, J. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J. Anal. Appl. Pyrolysis. 2016, 120, 200-206. https://doi.org/10.1016/j.jaap.2016.05.006

Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058

Torquato, L. D. M.; Crnkovic, P. M.; Ribeiro, C. A.; Crespi, M. S. New approach for proximate analysis by thermogravimetry using CO2 atmosphere: Validation and application to different biomasses. J. Therm. Anal. Calorim. 2017, 128, 1–14. https://doi.org/10.1007/s10973-016-5882-z

Tran, H. N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014

Tumuluru, J. S.; Sokhansanj, S.; Hess, J. R.; Wright, C. T.; Boardman, R. D. A review on biomass torrefaction process and product properties for energy applications. Ind. Biotechnol. 2011, 7, 384–401. https://doi.org/10.1089/ind.2011.7.384

Wang, B.; Jiang, Y.; Li, F.; Yang, D. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresour. Technol. 2017, 233, 159–165. https://doi.org/10.1016/j.biortech.2017.02.103

Yi, K.; Wang, D.; QiYang, Li. X.; Chen, H.; Sun, J.; An, H.; Wang, L.; Deng, Y.; Liu, J.; Zeng, G. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Sci. Total Environ. 2017, 605–606, 368–375. https://doi.org/10.1016/j.scitotenv.2017.06.215

Yuan, J.-H.; Xu, R.-K.; Zhan, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018