Studies of curing cycle of carbon fiber/epoxy resins (8552® and M21®) prepregs based on thermal and rheological analyses
Main Article Content
Abstract
Thermal and rheological characterizations were performed on prepreg produced with two different commercial epoxy resins - M21® and 8552® – aiming to study and optimize the curing cycle of structural components used in aerospace industry. Characterizations were performed by differential scanning calorimetry (DSC), rheology and dynamic mechanical analysis techniques were assessed and the results were correlated and supported by Fourier Transform Infrared spectroscopy. Additionally, to heating rates suggested by the material supplier, DSC analysis allowed to evaluate further heating rates: 2, 5, 10, 15 and 20 °C/min. Materials presented the n fractional order kinetic of cure and have in its formulation the presence of thermoplastics, in addition to epoxy and amine. Results confirmed that the best heating rates for processing both materials are the lower ones, as they result in a better control of the reactions between chemical compounds involved and the physical changes that are part of curing process stages. Results have analytically confirmed the suggested proposal for curing cycle from supplier is the best choice for materials involved.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2017/16970-0 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 306576/2020-1;304876/2020-8 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers 001
References
Agius, S. L.; Magniez, K. J. C.; Fox, B. L. Cure behaviour and void development within rapidly cured out-of-autoclave composites. Compos. B. Eng. 2013, 47, 230–237. https://doi.org/10.1016/j.compositesb.2012.11.020
ASTM E1356-08. Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry. ASTM International, 2014a. https://doi.org/10.1520/E1356-08R14
ASTM E968-02. Standard Practice for Heat Flow Calibration of Differential Scanning Calorimeters. ASTM International, 2014b. https://doi.org/10.1520/E0968-02R14
ASTM D7028-07e1. Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). ASTM International, 2015. https://doi.org/10.1520/D7028-07E01
ASTM E967-18. Standard Test Method for Temperature Calibration of Differential Scanning Calorimeters and Differential Thermal Analyzers. ASTM International, 2018. https://doi.org/10.1520/E0967-18
ASTM D4473-08. Standard Test Method for Plastics: Dynamic Mechanical Properties: Cure Behavior. ASTM International, 2021. https://doi.org/10.1520/D4473-08R21
Botelho, E. C.; Scherbakoff, N.; Rezende, M. C. Porosity control in glassy carbon by rheological study of the furfuryl resin. Carbon. 2001, 39 (1), 45–52. https://doi.org/10.1016/S0008-6223(00)00080-4
Braga, C. I.; Rezende, M. C.; Costa, M. L. Methodology for DSC calibration in high heating rates. J. Aerosp. Technol. Manag. 2011, 3 (2), 179–192. https://doi.org/10.5028/jatm.2011.03021911
Costa, M. L.; Botelho, E. C.; Paiva, J. M. F. D.; Rezende, M. C. Characterization of cure of carbon/epoxy prepreg used in aerospace field. Mater. Res. 2005, 8 (3), 317–322. https://doi.org/10.1590/S1516-14392005000300016
Costa, M. L.; Rezende, M. C.; Paiva, J. M. F.; Botelho, E. C. Structural carbon/epoxy prepregs properties comparison by thermal and rheological analyses. Polym. Plast. Technol. Eng. 2006, 45 (10), 1143–1153. https://doi.org/10.1080/03602550600887251
Das, P. P.; Chaudhary, V. Tribological and dynamic mechanical analysis of bio-composites: A review. Mater. Today: Proc. 2019, 25 (4), 729–734. https://doi.org/10.1016/j.matpr.2019.08.233
Ersoy, N.; Tugutlu, M. Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite. Istanbul: Bogazici University. Polym. Eng. Sci. 2010, 50 (2), 84–92. https://doi.org/10.1002/pen.21514
Friedman, H. L. Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci., polym. Symp. 1964, 6 (1), 183–195. https://doi.org/10.1002/polc.5070060121
González-Benito, J. The nature of the structural gradient in epoxy curing at a glass fiber/epoxy matrix interface using FTIR imaging. J. Colloid Interface Sci. 2003, 267 (2), 326–332. https://doi.org/10.1016/S0021-9797(03)00550-2
Hatter, C. B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical response of two-dimensional transition metal carbonitride (MXene) reinforced epoxy composites. Compos. B. Eng. 2020, 182, 107603. https://doi.org/10.1016/j.compositesb.2019.107603
Hexcel Corporation. HexPly® 8552 Epoxy matrix (180°C/356°F curing matrix). 2021a. https://www.hexcel.com/user_area/content_media/raw/HexPly_8552_us_DataSheet.pdf (accessed 2021-08-11).
Hexcel Corporation. HexPly® M21 Epoxy matrix (180°C/350°F curing matrix). 2021b. https://www.hexcel.com/user_area/content_media/raw/HexPly_M21_global_DataSheet.pdf (accessed 2021-08-11).
Hubert, P.; Johnston, A.; Poursartip, A.; Nelson, K. Cure kinetics and viscosity models for Hexcel 8552 epoxy resin. In International SAMPE symposium and exhibition. SAMPE. 2019.
Liu, H.; Falzon, B. G.; Tan, W. Experimental and numerical studies on the impact response of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates. Compos. B. Eng. 2018, 136, 101–118. https://doi.org/10.1016/j.compositesb.2017.10.016
Menard, K. P. Dynamic mechanical analysis: A practical introduction. CRC Press. 1999. https://doi.org/10.1201/9781420049183
Mesogitis, T.; Kratz, J.; Skordos, A. A. Heat transfer simulation of the cure of thermoplastic particle interleaf carbon fibre epoxy prepregs. J. Compos. Mater. 2018 53 (15), 2053–2064. https://doi.org/10.1177/0021998318818245
Mphahlele, K.; Ray, S. S.; Kolesnikov, A. Cure kinetics, morphology development, and rheology of a high-performance carbon-fiber-reinforced epoxy composite. Compos. B. Eng. 2019, 176, 107300. https://doi.org/10.1016/j.compositesb.2019.107300
Newcomb, B. A. Time-Temperature-Transformation (TTT) diagram of a carbon fiber epoxy prepreg. Polym. Test. 2019, 77, 105859. https://doi.org/10.1016/j.polymertesting.2019.04.006
Nixon-Pearson, O. J.; Belnoue, J. H.; Ivanov, D. S.; Potter, K. D.; Hallett, S. R. An experimental investigation of the consolidation behaviour of uncured prepregs under processing conditions. J. Compos. Mater. 2017, 51 (13), 1911–1924. https://doi.org/10.1177/0021998316665681
Oishi, S. S.; Rezende, M. C.; Origo, F. D.; Damião, A. J.; Botelho, E. C. Viscosity, pH, and moisture effect in the porosity of poly(furfuryl alcohol). J. Appl. Polym. Sci. 2013, 128 (3), 1680–1686. https://doi.org/10.1002/app.38332
Paiva, J. M.; Costa, M. L.; Rezende, M. C. Evaluation of thermal stability and glass transition temperature of different aeronautical polymeric composites. Polym. Plast. Technol. Eng. 2006, 45 (2), 157–164. https://doi.org/10.1080/03602550500373915
Paris, C.; Olivier, P. A.; Bernhart, G. Modelling of the thermokinetic behaviour and the phases transitions of a carbon/polymeric composite submitted to high heating rate ramps. Int. J. Mater. Form. 2010, 3 (1), 639–642. https://doi.org/10.1007/s12289-010-0851-8
Paris, C.; Bernhart, G.; Olivier, P. A.; Almeida, O. Influence of fast curing cycles on aeronautical prepreg M21/T700: polymerization control and mechanical properties. Mater. Tech. 2012, 100 (6–7), 611–622. https://doi.org/10.1051/mattech/2012010
Ribeiro, B.; Nohara, L. B.; Oishi, S. S.; Costa, M. L.; Botelho, E. C. Carbon nanotubes/polyamide 6.6 nanostructured composites crystallization kinetic study. J. Thermoplast. Compos. Mater. 2013, 26 (7), 893–911. https://doi.org/10.1177/0892705711430532
Sánchez-Soto, M.; Pagés, P.; Lacorte, T.; Briceño, K.; Carrasco, F. Curing FTIR study and mechanical characterization of glass bead filled trifunctional epoxy composites. Compos. Sci. Technol. 2007, 67 (9), 1974–1985. https://doi.org/10.1016/j.compscitech.2006.10.006
Silverstein, M.; Webster, F. X.; Kiemle, D. J. Spectrometric identification of organik compounds. John Wiley & sons. 2000.
Ștefanov, T.; Ryan, B.; Ivanković, A.; Murphy, N. Dynamic mechanical analysis of carbon black filled, elastomer-toughened ethyl cyanoacrylate adhesive bulk films. Int. J. Adhes. Adhes. 2020, 101, 102630. https://doi.org/10.1016/j.ijadhadh.2020.102630
Ueda, M.; Yokoo, T.; Nakamura, T. Synthesis of poly (ether‐sulfone‐amide)s by palladium‐catalyzed polycondensation of aromatic dibromides containing ether sulfone structure, aromatic diamines, and carbon monoxide. J. Polym. Sci., Part A: Polym. Chem. 1994, 32 (15), 2989–2995. https://doi.org/10.1002/pat.4328
Urban, V. M.; Machado, A. L.; Vergani, C. E.; Jorge, E. G.; Santos, L. P.; Leite, E. R.; Canevarolo, S. V. Degree of conversion and molecular weight of one denture base and three reline submitted to post–polymerization treatments. Mat. Res. 2007, 10 (2), 191–197. https://doi.org/10.1590/S1516-14392007000200016
Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Pérez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kineticcomputations on thermal analysis data. Thermochim. Acta. 2011, 520 (1–2), 1–19. https://doi.org/10.1016/j.tca.2011.03.034
Vyazovkin, S.; Chrissafis, K.; Di Lorenzo, M. L.; Koga, N.; Pijolat, M.; Roduitf, B.; Sbirrazzuoli, N.; Suñol, J. J. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta. 2014, 590, 1–23. https://doi.org/10.1016/j.tca.2014.05.036
Wang, Y.; Chea, M. K.; Belnoue, J. P.-H.; Kratz, J.; Ivanov, D. S.; Hallett, S. R. Experimental characterisation of the in-plane shear behaviour of UD thermoset prepregs under processing conditions. Compos. - A: Appl. Sci. Manuf. 2020, 133, 105865. https://doi.org/10.1016/j.compositesa.2020.105865
Wetton, R. E.; Marsh, R. D. L.; Van-de-Velde, J. G. Theory and application of dynamic mechanical thermal analysis. Thermochim. Acta. 1991, 175 (1), 1–11. https://doi.org/10.1016/0040-6031(91)80240-J