Abstract
Lactic acid is an attractive raw material in synthesizing many products. A new method for quantifying glycerol, lactic acid, and the by-products (pyruvaldehyde) obtained in this reaction was developed using high-performance liquid chromatography (HPLC) with a refractive index detector (HPLC-RI) in a column (300 × 7.7 mm, 8 µm) using H2SO4 0.001 M + 10% ACN (organic modifier) as mobile phase (0.6 mL min–1). This method indicated outstanding linearity for glycerol and lactic acid concentration from 0.6 to 6.6 g L–1 (coefficient of determination (R²) = 0.9912 and 0.9961, respectively) and accuracy between 98.33 and 100.00%. From this, it was possible to conclude that the method is applicable and concise for separating the primordial products in this reaction.
References
Arcanjo, M. R. A.; Silva Júnior, I. J.; Rodríguez-Castellón, E.; Infantes-Molina, A.; Vieira, R. S. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today. 2017, 279 (Part 2). https://doi.org/10.1016/j.cattod.2016.02.015
Beltrán-Prieto, J. C.; Pecha, J.; Kašpárková, V.; Kolomazník, K. Development of an HPLC method for the determination of glycerol oxidation products. J. Liq. Chromatogr. Relat. Technol. 2013, 36 (19), 2758–2773. https://doi.org/10.1080/10826076.2012.725695
Biddy, M. J.; Scarlata, C.; Kinchin, C. Chemicals from Biomass: a Market assessment of bioproducts with near-term potential. NREL/TP-5100-65509; National Renewable Energy Laboratory: Golden, CO, 2016. https://www.nrel.gov/docs/fy16osti/65509.pdf (Accessed 2021-08-19).
Bilck, A. P.; Müller, C. M. O.; Olivato, J. B.; Mali, S.; Grossmann, M. V. E.; Yamashita, F. Using glycerol produced from biodiesel as a plasticiser in extruded biodegradable films. Polímeros, 2015, 25 (4), 331–335. https://doi.org/10.1590/0104-1428.1803
Bruno, A. M.; Chagas, C. A.; Souza, M. V. M.; Manfro, R. L. Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system. Renew. Energ. 2018, 118, 160–171. https://doi.org/10.1016/j.renene.2017.11.014
Bruno, A. M.; Simões, T. D. R.; Souza, M. M. V. M.; Manfro, R. L. Cu catalysts supported on CaO/MgO for glycerol conversion to lactic acid in alkaline medium employing a continuous flow reaction system. RSC Adv. 2020, 10 (52), 31123–31138. https://doi.org/10.1039/D0RA06547A
Cassini, S. T.; Antunes, P. W. P.; Keller, R. Validação de método analítico livre de acetonitrila para análise de microcistinas por cromatografia líquida de alta eficiência. Quim. Nova. 2013, 36 (8), 1208–1213. https://doi.org/10.1590/S0100-40422013000800019
Chi, Z.; Pyle, D.; Wen, Z.; Frear. C.; Chen, S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 2007, 42 (11), 1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008
Dias, G. P.; Santos, R. C.; Carvalho, R. C.; Souza, C. G.; Santos, A. P. F.; Andrade, D. F.; D’Ávila, L. A. Determination of Methanol in Gasoline and Ethanol Fuels by High-Performance Liquid Chromatography. J. Braz. Chem. Soc. 2020, 31 (5), 1055–1063. https://doi.org/10.21577/0103-5053.20190272
Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology. Adv. Mater. 2000, 12 (23), 1841–1846. https://doi.org/10.1002/1521-4095(200012)12:23%3C1841::AID-ADMA1841%3E3.0.CO;2-E
Evans, C. D.; Douthwaite, M.; Carter, J. H.; Pattisson, S.; Kondrat S. A.; Bethell, D.; Knight, D. W.; Taylor, S. H.; Hutchings, G. J. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. J. Chem. Phys. 2020, 152 (13), 134705. https://doi.org/10.1063/1.5128595
Goutal, S.; Auvity, S.; Legrand, T.; Hauquier, F.; Cisternino, S.; Chapy, H.; Saba, W.; Tournier, N. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient. J. Pharm Biomed. Anal. 2016, 123 (1), 173–178. https://doi.org/10.1016/j.jpba.2016.02.013
Huang, D.; Zhou, H.; Lin, L. Biodiesel: an Alternative to Conventional Fuel. Energy Procedia. 2012, 16 (Part C), 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287
ICH International Conference on Harmonization. Validation of Analytical Procedures: Text and Methodology – Q2 (R1); Geneva, Switzerland, 2005. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (Accessed 2021-08-19).
Lanças, F. M. Validação de Métodos Cromatográficos de Análise; Editora RiMA, 2004.
Lari, G. M.; García-Muelas, R.; Mondelli, C.; López, N.; Pérez-Ramírez, J. Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production. Green Chem. 2016, 18 (17), 4682–4692. https://doi.org/10.1039/C6GC00894A
Leite, F. Validação em Análise Química; Átomo, 2008.
Manfro, R. L.; Souza, M. M. V. M. Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds. Catal. Lett. 2014, 144 (5), 867–877. https://doi.org/10.1007/s10562-014-1196-6
Novaes, C. G.; Yamaki, R. T.; Paula, V. F. Nascimento Júnior, B. B.; Barreto, J. A.; Valasques, G. S.; Bezerra, M. A. Otimização de Métodos Analíticos Usando Metodologia de Superfícies de Resposta – Parte I: Variáveis de Processo. Rev. Virtual Quim. 2018, 9 (3), 1184–1215. https://doi.org/10.21577/1984-6835.20170070
Oliveira, R. A.; Komesu, A.; Rossell C. E. V.; Maciel Filho, R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem. Eng. J. 2018, 133, 219–239. https://doi.org/10.1016/j.bej.2018.03.003
Ribani, M.; Bottoli, C. B. G.; Collins, C. H.; Jardim, I. C. S. F.; Melo, L. F. C. Validação em métodos cromatográficos e eletroforéticos. Quim. Nova. 2004, 27 (5), 771–780. https://doi.org/10.1590/S0100-40422004000500017
Rocha, K. R.; Bacelar Júnior, A. J. ANOVA Medidas repetidas e seus pressupostos: Análise passo a passo de um experimento. Perspect. Cienc. Tec. 2018, 10, 29–51. https://doi.org/10.22407/1984-5693.2018.v10.p.29-51
Sadek, P. C. The HPLC Solvent Guide; Wiley, 1996.
Santos, K. M. A.; Albuquerque, E. M.; Borges, L. E. P.; Fraga, M. A. Discussing Lewis and Brønsted acidity on continuous pyruvaldehyde Cannizzaro reaction to lactic acid over solid catalysts. Mol. Catal. 2018, 458 (Part B), 198–205. https://doi.org/10.1016/j.mcat.2017.12.010
Shen, Z.; Jin, F.; Zhang, Y.; Wu, B.; Kishita, A.; Tohjj, K.; Kishida, H. Effect of Alkaline Catalysts on the Hydrothermal Conversion of Glycerin into Lactic Acid. Ind. Eng. Chem. Res. 2009, 48 (19), 8920–8925. https://doi.org/10.1021/ie900937d
Souza, S. V. C.; Junqueira, R. G. A procedure to assess linearity by ordinary least squares method. Anal. Chim. Acta. 2005, 552 (1–2), 25–35. https://doi.org/10.1016/j.aca.2005.07.043
Tan, Y. H.; Abdullah, M.O.; Nolasco-Hipolito, C. The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and engine performance. Renew. Sust. Energ. Rev. 2015, 47, 589–603. https://doi.org/10.1016/j.rser.2015.03.048
Welch, C. J.; Brkovic, T.; Schafer, W.; Gong, X. Performance to burn? Re-evaluating the choice of acetonitrile as the platform solvent for analytical HPLC. Green Chem. 2009, 11 (8), 1232–1238. https://doi.org/10.1039/B906215G

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Eclética Química Journal