Separation of lactic acid and by-products obtained by catalytic conversion of glycerol using high-performance liquid chromatography

Main Article Content

Andreza de Faria Alves Cruz
Gabriella Pinho Dias
Flávia de Rezende Bittencourt
Donato Alexandre Gomes Aranda

Abstract

Lactic acid is an attractive raw material in synthesizing many products. A new method for quantifying glycerol, lactic acid, and the by-products (pyruvaldehyde) obtained in this reaction was developed using high-performance liquid chromatography (HPLC) with a refractive index detector (HPLC-RI) in a column (300 × 7.7 mm, 8 µm) using H2SO4 0.001 M + 10% ACN (organic modifier) as mobile phase (0.6 mL min–1). This method indicated outstanding linearity for glycerol and lactic acid concentration from 0.6 to 6.6 g L–1 (coefficient of determination (R²) = 0.9912 and 0.9961, respectively) and accuracy between 98.33 and 100.00%. From this, it was possible to conclude that the method is applicable and concise for separating the primordial products in this reaction.

Metrics

Metrics Loading ...

Article Details

How to Cite
Cruz, A. de F. A., Dias, G. P., Bittencourt, F. de R., & Aranda, D. A. G. (2022). Separation of lactic acid and by-products obtained by catalytic conversion of glycerol using high-performance liquid chromatography. Eclética Química, 47(2), 74–81. https://doi.org/10.26850/1678-4618eqj.v47.2.2022.p74-81
Section
Original articles

Funding data

References

Arcanjo, M. R. A.; Silva Júnior, I. J.; Rodríguez-Castellón, E.; Infantes-Molina, A.; Vieira, R. S. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catal. Today. 2017, 279 (Part 2). https://doi.org/10.1016/j.cattod.2016.02.015

Beltrán-Prieto, J. C.; Pecha, J.; Kašpárková, V.; Kolomazník, K. Development of an HPLC method for the determination of glycerol oxidation products. J. Liq. Chromatogr. Relat. Technol. 2013, 36 (19), 2758–2773. https://doi.org/10.1080/10826076.2012.725695

Biddy, M. J.; Scarlata, C.; Kinchin, C. Chemicals from Biomass: a Market assessment of bioproducts with near-term potential. NREL/TP-5100-65509; National Renewable Energy Laboratory: Golden, CO, 2016. https://www.nrel.gov/docs/fy16osti/65509.pdf (Accessed 2021-08-19).

Bilck, A. P.; Müller, C. M. O.; Olivato, J. B.; Mali, S.; Grossmann, M. V. E.; Yamashita, F. Using glycerol produced from biodiesel as a plasticiser in extruded biodegradable films. Polímeros, 2015, 25 (4), 331–335. https://doi.org/10.1590/0104-1428.1803

Bruno, A. M.; Chagas, C. A.; Souza, M. V. M.; Manfro, R. L. Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system. Renew. Energ. 2018, 118, 160–171. https://doi.org/10.1016/j.renene.2017.11.014

Bruno, A. M.; Simões, T. D. R.; Souza, M. M. V. M.; Manfro, R. L. Cu catalysts supported on CaO/MgO for glycerol conversion to lactic acid in alkaline medium employing a continuous flow reaction system. RSC Adv. 2020, 10 (52), 31123–31138. https://doi.org/10.1039/D0RA06547A

Cassini, S. T.; Antunes, P. W. P.; Keller, R. Validação de método analítico livre de acetonitrila para análise de microcistinas por cromatografia líquida de alta eficiência. Quim. Nova. 2013, 36 (8), 1208–1213. https://doi.org/10.1590/S0100-40422013000800019

Chi, Z.; Pyle, D.; Wen, Z.; Frear. C.; Chen, S. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem. 2007, 42 (11), 1537–1545. https://doi.org/10.1016/j.procbio.2007.08.008

Dias, G. P.; Santos, R. C.; Carvalho, R. C.; Souza, C. G.; Santos, A. P. F.; Andrade, D. F.; D’Ávila, L. A. Determination of Methanol in Gasoline and Ethanol Fuels by High-Performance Liquid Chromatography. J. Braz. Chem. Soc. 2020, 31 (5), 1055–1063. https://doi.org/10.21577/0103-5053.20190272

Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology. Adv. Mater. 2000, 12 (23), 1841–1846. https://doi.org/10.1002/1521-4095(200012)12:23%3C1841::AID-ADMA1841%3E3.0.CO;2-E

Evans, C. D.; Douthwaite, M.; Carter, J. H.; Pattisson, S.; Kondrat S. A.; Bethell, D.; Knight, D. W.; Taylor, S. H.; Hutchings, G. J. Enhancing the understanding of the glycerol to lactic acid reaction mechanism over AuPt/TiO2 under alkaline conditions. J. Chem. Phys. 2020, 152 (13), 134705. https://doi.org/10.1063/1.5128595

Goutal, S.; Auvity, S.; Legrand, T.; Hauquier, F.; Cisternino, S.; Chapy, H.; Saba, W.; Tournier, N. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient. J. Pharm Biomed. Anal. 2016, 123 (1), 173–178. https://doi.org/10.1016/j.jpba.2016.02.013

Huang, D.; Zhou, H.; Lin, L. Biodiesel: an Alternative to Conventional Fuel. Energy Procedia. 2012, 16 (Part C), 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287

ICH International Conference on Harmonization. Validation of Analytical Procedures: Text and Methodology – Q2 (R1); Geneva, Switzerland, 2005. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf (Accessed 2021-08-19).

Lanças, F. M. Validação de Métodos Cromatográficos de Análise; Editora RiMA, 2004.

Lari, G. M.; García-Muelas, R.; Mondelli, C.; López, N.; Pérez-Ramírez, J. Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production. Green Chem. 2016, 18 (17), 4682–4692. https://doi.org/10.1039/C6GC00894A

Leite, F. Validação em Análise Química; Átomo, 2008.

Manfro, R. L.; Souza, M. M. V. M. Production of Renewable Hydrogen by Glycerol Steam Reforming Using Ni–Cu–Mg–Al Mixed Oxides Obtained from Hydrotalcite-like Compounds. Catal. Lett. 2014, 144 (5), 867–877. https://doi.org/10.1007/s10562-014-1196-6

Novaes, C. G.; Yamaki, R. T.; Paula, V. F. Nascimento Júnior, B. B.; Barreto, J. A.; Valasques, G. S.; Bezerra, M. A. Otimização de Métodos Analíticos Usando Metodologia de Superfícies de Resposta – Parte I: Variáveis de Processo. Rev. Virtual Quim. 2018, 9 (3), 1184–1215. https://doi.org/10.21577/1984-6835.20170070

Oliveira, R. A.; Komesu, A.; Rossell C. E. V.; Maciel Filho, R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem. Eng. J. 2018, 133, 219–239. https://doi.org/10.1016/j.bej.2018.03.003

Ribani, M.; Bottoli, C. B. G.; Collins, C. H.; Jardim, I. C. S. F.; Melo, L. F. C. Validação em métodos cromatográficos e eletroforéticos. Quim. Nova. 2004, 27 (5), 771–780. https://doi.org/10.1590/S0100-40422004000500017

Rocha, K. R.; Bacelar Júnior, A. J. ANOVA Medidas repetidas e seus pressupostos: Análise passo a passo de um experimento. Perspect. Cienc. Tec. 2018, 10, 29–51. https://doi.org/10.22407/1984-5693.2018.v10.p.29-51

Sadek, P. C. The HPLC Solvent Guide; Wiley, 1996.

Santos, K. M. A.; Albuquerque, E. M.; Borges, L. E. P.; Fraga, M. A. Discussing Lewis and Brønsted acidity on continuous pyruvaldehyde Cannizzaro reaction to lactic acid over solid catalysts. Mol. Catal. 2018, 458 (Part B), 198–205. https://doi.org/10.1016/j.mcat.2017.12.010

Shen, Z.; Jin, F.; Zhang, Y.; Wu, B.; Kishita, A.; Tohjj, K.; Kishida, H. Effect of Alkaline Catalysts on the Hydrothermal Conversion of Glycerin into Lactic Acid. Ind. Eng. Chem. Res. 2009, 48 (19), 8920–8925. https://doi.org/10.1021/ie900937d

Souza, S. V. C.; Junqueira, R. G. A procedure to assess linearity by ordinary least squares method. Anal. Chim. Acta. 2005, 552 (1–2), 25–35. https://doi.org/10.1016/j.aca.2005.07.043

Tan, Y. H.; Abdullah, M.O.; Nolasco-Hipolito, C. The potential of waste cooking oil-based biodiesel using heterogeneous catalyst derived from various calcined eggshells coupled with an emulsification technique: A review on the emission reduction and engine performance. Renew. Sust. Energ. Rev. 2015, 47, 589–603. https://doi.org/10.1016/j.rser.2015.03.048

Welch, C. J.; Brkovic, T.; Schafer, W.; Gong, X. Performance to burn? Re-evaluating the choice of acetonitrile as the platform solvent for analytical HPLC. Green Chem. 2009, 11 (8), 1232–1238. https://doi.org/10.1039/B906215G