YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles synthesized by the microwave-assisted hydrothermal method for photoluminescence application
Main Article Content
Abstract
Here, an experimental study is presented on the YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles synthesized by means of the microwave-assisted hydrothermal method. Different characterization techniques (X-ray diffraction, Raman and ultraviolet-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and photoluminescence emissions) have been employed to examine the structural, optical, as well as its morphology and photoluminescent properties. The as-synthetized samples present different emission colors due to RE3+ ions, as well as nanosized spherical morphology because of synthesis method. These materials can be considered efficient materials for optical devices.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 13/07296-2;17/12594-3;19/03722-3;19/25944-8
References
Alkahtani, M.; Alfahd, A.; Alsofyani, N.; Almuqhim, A. A.; Qassem, H.; Alshehri, A. A.; Almughen, F. A.; Hemmer, P. Photostable and small YVO4:Yb,Er upconversion nanoparticles in water. Nanomaterials 2021, 11 (6), 1535. https://doi.org/10.3390/nano11061535
Almeida, P. B.; Pinatti, I. M.; Oliveira, R. C.; Teixeira, M. M.; Santos, C. C.; Machado, T. R.;Longo, E.; Rosa, I. L. V. Structural, morphological and photoluminescence properties of β-Ag2MoO4 doped with Eu3+. Chem. Pap. 2021, 75, 1869–1882. https://doi.org/10.1007/s11696-020-01489-4
Ferreira, N. H.; Furtado, R. A.; Ribeiro, A. B.; Oliveira, P. F.; Ozelin, S. D.; Souza, L. D. R.; Rinaldi Neto, F.; Miura, B. A.; Magalhães, G. M.; Nassar, E. J.; Tavares, D. C. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J. Inorg. Biochem. 2018, 182,9–17. https://doi.org/10.1016/j.jinorgbio.2018.01.014
Huong, T. T.; Vinh, L. T.; Phuong, H. T.; Khuyen, H. T.; Anh, T. K.; Tu, V. D.; Minh, L. Q. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis. J. Lumin. 2016, 173, 89–93. https://doi.org/10.1016/j.jlumin.2016.01.003
Jayaraman, A.; Kourouklis, G. A.; Espinosa, G. P.; Cooper, A. S.; Van Uitert, L. G. A high-pressure Raman study of yttrium vanadate (YVO4) and the pressure-induced transition from the zircon-type to the scheelite-type structure. J. Phys. Chem. Solids 1987, 48 (8), 755–759. https://doi.org/10.1016/0022-3697(87)90072-2
Ji, H.; Tang, J.; Tang, X.; Yang, Z.; Zhang, H.; Qian, Y. Enhanced upconversion emissions of NaNbO3:Er3+/Yb3+ nanocrystals via Mg2+ ions doping. Mater. Lett. 2021, 302, 130348. https://doi.org/10.1016/j.matlet.2021.130348
Jin, Y.; Li, C.; Xu, Z.; Cheng, Z.; Wang, W.; Li, G.; Lin, J. Microwave-assisted hydrothermal synthesis and multicolor tuning luminescence of YPxV1-xO4:Ln3+ (Ln = Eu, Dy, Sm) nanoparticles. Mater. Chem. Phys. 2011, 129 (1–2), 418–423. https://doi.org/10.1016/j.matchemphys.2011.04.035
Kshetri, Y. K.; Regmi, C.; Kim, H.-S.; Lee, S. W.; Kim, T. H. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles. Nanotechnology 2018, 29 (20), 204004. https://doi.org/10.1088/1361-6528/aab2bf
Li, K.; Chen, T.; Mao, H.; Chen, Y.; Wang, J. Preparation and Upconversion Emission Investigation of the YVO4:Yb3+:Er3+ Nanomaterials and Their Coupling with the Au Nanoparticles. J. Electron. Mater. 2021, 50,1189–1195. https://doi.org/10.1007/s11664-020-08636-3
Liu, Y.; Xiong, H.; Zhang, N.; Leng, Z.; Li, R.; Gan, S. Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies. J. Alloys Compd. 2015, 653, 126–134. https://doi.org/10.1016/j.jallcom.2015.09.015
Liu, Y.; Yang, C.; Xiong, H.; Zhang, N.; Leng, Z.; Li, R.;Gan, S. Surfactant assisted synthesis of the YVO4: Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids Surf. A Physicochem. Eng. Asp. 2016, 502, 139–146. https://doi.org/10.1016/j.colsurfa.2016.05.006
Mahata, M. K.; Kumar, K.; Rai, V. K. Er3+–Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior. Sens. Actuators B Chem. 2015, 209, 775–780. https://doi.org/10.1016/j.snb.2014.12.039
Matos, M. G; Rocha, L. A.; Nassar, E. J.; Verelst, M. Influence of Bi3+ ions on the excitation wavelength of the YVO4:Eu3+ matrix. Opt. Mater. 2016, 62, 12–18. https://doi.org/10.1016/j.optmat.2016.09.035
Momma, K.; Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008, 41, 653–658. https://doi.org/10.1107/S0021889808012016
Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. https://doi.org/10.1107/S0021889811038970
Panayiotakis, G.; Cavouras, D.; Kandarakis, I.; Nomicos, C. A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO4: Eu) screens for medical imaging applications. Appl. Phys. A 1996, 62, 483–486. https://doi.org/10.1007/BF01567121
Pinatti, I. M.; Nogueira, I. C.; Pereira, W. S.; Pereira, P. F. S.; Gonçalves, R. F.; Varela, J. A.; Longo, E.; Rosa, I. L. V. Structural and photoluminescence properties of Eu3+ doped α-Ag2WO4 synthesized by the green coprecipitation methodology. Dalton Trans. 2015, 44 (40),17673–17685. https://doi.org/10.1039/C5DT01997D
Pinatti, I. M.; Mazzo, T. M.; Gonçalves, R. F.; Varela, J. A.; Longo, E.; Rosa, I. L. V. CaTiO3 and Ca1-3xSmxTiO3: Photoluminescence and morphology as a result of Hydrothermal Microwave Methodology. Ceram. Int. 2016, 42 (1) (Part B), 1352–1360. https://doi.org/10.1016/j.ceramint.2015.09.074
Pinatti, I. M.; Fern, G. R.; Longo, E.; Ireland, T. G.; Pereira, P. F. S.; Rosa, I. L.V.; Silver, J. Luminescence properties of α-Ag2WO4 nanorods co-doped with Li+ and Eu3+ cations and their effects on its structure. J. Lumin. 2019a, 206, 442–454. https://doi.org/10.1016/j.jlumin.2018.10.104
Pinatti, I. M.; Pereira, P. F. S.; Assis, M.; Longo, E.; Rosa, I. L. V. Rare earth doped silver tungstate for photoluminescent applications. J. Alloys Compd. 2019b, 771, 433–447. https://doi.org/10.1016/j.jallcom.2018.08.302
Rivera-Enríquez, C. E.; Fernández-Osorio, A. L. Synthesis of YVO4:Eu3+ nanophosphors by the chemical coprecipitation method at room temperature. J. Lumin. 2021, 236, 118110. https://doi.org/10.1016/j.jlumin.2021.118110
Saltarelli, M.; Matos, M. G.; Faria, E. H.; Ciuffi, K. J.; Rocha, L. A.; Nassar, E. J. Preparation of YVO4:Eu3+ at low temperature by the hydrolytic sol–gel methodology. J. Sol-Gel Sci. Technol. 2014, 73, 283–292. https://doi.org/10.1007/s10971-014-3525-z
Shen, J.; Sun, L. D.; Zhu, J. D.; Wei, L. H.; Sun, H. F.; Yan, C. H. Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes. Adv. Funct. Mater. 2010, 20 (21), 3708–3714. https://doi.org/10.1002/adfm.201001264
Sousa Filho, P. C.; Alain, J.; Leménager, G.; Larquet, E.; Fick, J.; Serra, O. A.; Gacoin, T. Colloidal Rare Earth Vanadate Single Crystalline Particles as Ratiometric Luminescent Thermometers. J. Phys. Chem. C 2019, 123 (4), 2441–2450. https://doi.org/10.1021/acs.jpcc.8b12251
Sun, Y.; Liu, H.; Wang, X.; Kong, X.; Zhang, H. Optical spectroscopy and visible upconversion studies of YVO4:Er3+ nanocrystals synthesized by a hydrothermal process. Chem. Mater. 2006, 18, 2726–2732. https://doi.org/10.1021/cm051971m
Woźny, P.; Szczeszak, A.; Lis, S. Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO4: Yb3+, Er3+ nanoparticles. Opt. Mater. 2018, 76, 400–406. https://doi.org/10.1016/j.optmat.2018.01.009
Woźny, P.; Runowski, M.; Lis, S. Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4 : Yb3+, Er3+ nanoparticles. J. Lumin. 2019, 209, 321–327. https://doi.org/10.1016/j.jlumin.2019.02.008
Yang, L.; Peng, S.; Zhao, M.; Yu, L. New synthetic strategies for luminescent YVO4 :Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) with mesoporous cell-like nanostructure . Opt. Mater. Express 2018, 8, 3805–3819. https://doi.org/10.1364/OME.8.003805
Yu, M.; Lin, J.; Wang, Z.; Fu, J.; Wang, S.; Zhang, H. J.; Han, Y. C. Fabrication, patterning, and optical properties of nanocrystalline YVO4 :A (A = Eu3+, Dy3+, Sm3+, Er 3+) phosphor films via sol-gel soft lithography. Chem. Mater. 2002, 14, 2224–2231. https://doi.org/10.1021/cm011663y
Zhang, Y.-m.; Li, Y.-h; Li, P.; Hong, G.-y.; Yu, Y.n. Preparation and upconversion luminescence of YVO4:Er3+, Yb3+. Int. J. Miner. Metall. Mater. 2010, 17, 225–228. https://doi.org/10.1007/s12613-010-0218-7