YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles synthesized by the microwave-assisted hydrothermal method for photoluminescence application

Main Article Content

Ivo Mateus Pinatti
Camila Cristina de Foggi
Marcio Daldin Teodoro
Elson Longo
Alexandre Zirpoli Simões
Ieda Lúcia Viana Rosa

Abstract

Here, an experimental study is presented on the YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles synthesized by means of the microwave-assisted hydrothermal method. Different characterization techniques (X-ray diffraction, Raman and ultraviolet-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and photoluminescence emissions) have been employed to examine the structural, optical, as well as its morphology and photoluminescent properties. The as-synthetized samples present different emission colors due to RE3+ ions, as well as nanosized spherical morphology because of synthesis method. These materials can be considered efficient materials for optical devices.

Metrics

Metrics Loading ...

Article Details

How to Cite
Pinatti, I. M., de Foggi, C. C., Teodoro, M. D., Longo, E., Simões, A. Z., & Rosa, I. L. V. (2022). YVO4:RE (RE = Eu, Tm, and Yb/Er) nanoparticles synthesized by the microwave-assisted hydrothermal method for photoluminescence application. Eclética Química, 47(1SI), 39–49. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p39-49
Section
Original articles

Funding data

References

Alkahtani, M.; Alfahd, A.; Alsofyani, N.; Almuqhim, A. A.; Qassem, H.; Alshehri, A. A.; Almughen, F. A.; Hemmer, P. Photostable and small YVO4:Yb,Er upconversion nanoparticles in water. Nanomaterials 2021, 11 (6), 1535. https://doi.org/10.3390/nano11061535

Almeida, P. B.; Pinatti, I. M.; Oliveira, R. C.; Teixeira, M. M.; Santos, C. C.; Machado, T. R.;Longo, E.; Rosa, I. L. V. Structural, morphological and photoluminescence properties of β-Ag2MoO4 doped with Eu3+. Chem. Pap. 2021, 75, 1869–1882. https://doi.org/10.1007/s11696-020-01489-4

Ferreira, N. H.; Furtado, R. A.; Ribeiro, A. B.; Oliveira, P. F.; Ozelin, S. D.; Souza, L. D. R.; Rinaldi Neto, F.; Miura, B. A.; Magalhães, G. M.; Nassar, E. J.; Tavares, D. C. Europium(III)-doped yttrium vanadate nanoparticles reduce the toxicity of cisplatin. J. Inorg. Biochem. 2018, 182,9–17. https://doi.org/10.1016/j.jinorgbio.2018.01.014

Huong, T. T.; Vinh, L. T.; Phuong, H. T.; Khuyen, H. T.; Anh, T. K.; Tu, V. D.; Minh, L. Q. Controlled fabrication of the strong emission YVO4:Eu3+ nanoparticles and nanowires by microwave assisted chemical synthesis. J. Lumin. 2016, 173, 89–93. https://doi.org/10.1016/j.jlumin.2016.01.003

Jayaraman, A.; Kourouklis, G. A.; Espinosa, G. P.; Cooper, A. S.; Van Uitert, L. G. A high-pressure Raman study of yttrium vanadate (YVO4) and the pressure-induced transition from the zircon-type to the scheelite-type structure. J. Phys. Chem. Solids 1987, 48 (8), 755–759. https://doi.org/10.1016/0022-3697(87)90072-2

Ji, H.; Tang, J.; Tang, X.; Yang, Z.; Zhang, H.; Qian, Y. Enhanced upconversion emissions of NaNbO3:Er3+/Yb3+ nanocrystals via Mg2+ ions doping. Mater. Lett. 2021, 302, 130348. https://doi.org/10.1016/j.matlet.2021.130348

Jin, Y.; Li, C.; Xu, Z.; Cheng, Z.; Wang, W.; Li, G.; Lin, J. Microwave-assisted hydrothermal synthesis and multicolor tuning luminescence of YPxV1-xO4:Ln3+ (Ln = Eu, Dy, Sm) nanoparticles. Mater. Chem. Phys. 2011, 129 (1–2), 418–423. https://doi.org/10.1016/j.matchemphys.2011.04.035

Kshetri, Y. K.; Regmi, C.; Kim, H.-S.; Lee, S. W.; Kim, T. H. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles. Nanotechnology 2018, 29 (20), 204004. https://doi.org/10.1088/1361-6528/aab2bf

Li, K.; Chen, T.; Mao, H.; Chen, Y.; Wang, J. Preparation and Upconversion Emission Investigation of the YVO4:Yb3+:Er3+ Nanomaterials and Their Coupling with the Au Nanoparticles. J. Electron. Mater. 2021, 50,1189–1195. https://doi.org/10.1007/s11664-020-08636-3

Liu, Y.; Xiong, H.; Zhang, N.; Leng, Z.; Li, R.; Gan, S. Microwave synthesis and luminescent properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) phosphors with different morphologies. J. Alloys Compd. 2015, 653, 126–134. https://doi.org/10.1016/j.jallcom.2015.09.015

Liu, Y.; Yang, C.; Xiong, H.; Zhang, N.; Leng, Z.; Li, R.;Gan, S. Surfactant assisted synthesis of the YVO4: Ln3+ (Ln = Eu, Dy, Sm) phosphors and shape-dependent luminescence properties. Colloids Surf. A Physicochem. Eng. Asp. 2016, 502, 139–146. https://doi.org/10.1016/j.colsurfa.2016.05.006

Mahata, M. K.; Kumar, K.; Rai, V. K. Er3+–Yb3+ doped vanadate nanocrystals: A highly sensitive thermographic phosphor and its optical nanoheater behavior. Sens. Actuators B Chem. 2015, 209, 775–780. https://doi.org/10.1016/j.snb.2014.12.039

Matos, M. G; Rocha, L. A.; Nassar, E. J.; Verelst, M. Influence of Bi3+ ions on the excitation wavelength of the YVO4:Eu3+ matrix. Opt. Mater. 2016, 62, 12–18. https://doi.org/10.1016/j.optmat.2016.09.035

Momma, K.; Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 2008, 41, 653–658. https://doi.org/10.1107/S0021889808012016

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. https://doi.org/10.1107/S0021889811038970

Panayiotakis, G.; Cavouras, D.; Kandarakis, I.; Nomicos, C. A study of X-ray luminescence and spectral compatibility of europium-activated yttrium-vanadate (YVO4: Eu) screens for medical imaging applications. Appl. Phys. A 1996, 62, 483–486. https://doi.org/10.1007/BF01567121

Pinatti, I. M.; Nogueira, I. C.; Pereira, W. S.; Pereira, P. F. S.; Gonçalves, R. F.; Varela, J. A.; Longo, E.; Rosa, I. L. V. Structural and photoluminescence properties of Eu3+ doped α-Ag2WO4 synthesized by the green coprecipitation methodology. Dalton Trans. 2015, 44 (40),17673–17685. https://doi.org/10.1039/C5DT01997D

Pinatti, I. M.; Mazzo, T. M.; Gonçalves, R. F.; Varela, J. A.; Longo, E.; Rosa, I. L. V. CaTiO3 and Ca1-3xSmxTiO3: Photoluminescence and morphology as a result of Hydrothermal Microwave Methodology. Ceram. Int. 2016, 42 (1) (Part B), 1352–1360. https://doi.org/10.1016/j.ceramint.2015.09.074

Pinatti, I. M.; Fern, G. R.; Longo, E.; Ireland, T. G.; Pereira, P. F. S.; Rosa, I. L.V.; Silver, J. Luminescence properties of α-Ag2WO4 nanorods co-doped with Li+ and Eu3+ cations and their effects on its structure. J. Lumin. 2019a, 206, 442–454. https://doi.org/10.1016/j.jlumin.2018.10.104

Pinatti, I. M.; Pereira, P. F. S.; Assis, M.; Longo, E.; Rosa, I. L. V. Rare earth doped silver tungstate for photoluminescent applications. J. Alloys Compd. 2019b, 771, 433–447. https://doi.org/10.1016/j.jallcom.2018.08.302

Rivera-Enríquez, C. E.; Fernández-Osorio, A. L. Synthesis of YVO4:Eu3+ nanophosphors by the chemical coprecipitation method at room temperature. J. Lumin. 2021, 236, 118110. https://doi.org/10.1016/j.jlumin.2021.118110

Saltarelli, M.; Matos, M. G.; Faria, E. H.; Ciuffi, K. J.; Rocha, L. A.; Nassar, E. J. Preparation of YVO4:Eu3+ at low temperature by the hydrolytic sol–gel methodology. J. Sol-Gel Sci. Technol. 2014, 73, 283–292. https://doi.org/10.1007/s10971-014-3525-z

Shen, J.; Sun, L. D.; Zhu, J. D.; Wei, L. H.; Sun, H. F.; Yan, C. H. Biocompatible bright YVO4:Eu nanoparticles as versatile optical bioprobes. Adv. Funct. Mater. 2010, 20 (21), 3708–3714. https://doi.org/10.1002/adfm.201001264

Sousa Filho, P. C.; Alain, J.; Leménager, G.; Larquet, E.; Fick, J.; Serra, O. A.; Gacoin, T. Colloidal Rare Earth Vanadate Single Crystalline Particles as Ratiometric Luminescent Thermometers. J. Phys. Chem. C 2019, 123 (4), 2441–2450. https://doi.org/10.1021/acs.jpcc.8b12251

Sun, Y.; Liu, H.; Wang, X.; Kong, X.; Zhang, H. Optical spectroscopy and visible upconversion studies of YVO4:Er3+ nanocrystals synthesized by a hydrothermal process. Chem. Mater. 2006, 18, 2726–2732. https://doi.org/10.1021/cm051971m

Woźny, P.; Szczeszak, A.; Lis, S. Effect of various surfactants on changes in the emission color chromaticity in upconversion YVO4: Yb3+, Er3+ nanoparticles. Opt. Mater. 2018, 76, 400–406. https://doi.org/10.1016/j.optmat.2018.01.009

Woźny, P.; Runowski, M.; Lis, S. Emission color tuning and phase transition determination based on high-pressure up-conversion luminescence in YVO4 : Yb3+, Er3+ nanoparticles. J. Lumin. 2019, 209, 321–327. https://doi.org/10.1016/j.jlumin.2019.02.008

Yang, L.; Peng, S.; Zhao, M.; Yu, L. New synthetic strategies for luminescent YVO4 :Ln3+ (Ln = Pr, Sm, Eu, Tb, Dy, Ho, Er) with mesoporous cell-like nanostructure . Opt. Mater. Express 2018, 8, 3805–3819. https://doi.org/10.1364/OME.8.003805

Yu, M.; Lin, J.; Wang, Z.; Fu, J.; Wang, S.; Zhang, H. J.; Han, Y. C. Fabrication, patterning, and optical properties of nanocrystalline YVO4 :A (A = Eu3+, Dy3+, Sm3+, Er 3+) phosphor films via sol-gel soft lithography. Chem. Mater. 2002, 14, 2224–2231. https://doi.org/10.1021/cm011663y

Zhang, Y.-m.; Li, Y.-h; Li, P.; Hong, G.-y.; Yu, Y.n. Preparation and upconversion luminescence of YVO4:Er3+, Yb3+. Int. J. Miner. Metall. Mater. 2010, 17, 225–228. https://doi.org/10.1007/s12613-010-0218-7