High photocatalytic activity of Ag/Ag3PO4:W heterostructure formed by femtosecond laser irradiation

Main Article Content

Aline Barrios Trench
Vinícius Teodoro
Letícia Guerreiro da Trindade
Thales Rafael Machado
Gladys Minguez-Vega
Eloisa Cordoncillo
Carlos Doñate-Buendía
Juan Andrés
Elson Longo

Abstract

In this work, the W-doped Ag3PO4 was prepared by the chemical coprecipitation method and irradiated with a femtosecond laser (FL). The successful formation of the Ag/Ag3PO4:W heterostructure was confirmed by XRD analysis. A higher structural disorder in the [PO4] clusters was observed for the FL irradiated sample (Ag3PO4:W-FL), indicating the formation of Ag metallic from the Ag3PO4 structure. The photocatalytic activity of the samples was studied by photodegradation of rhodamine B under visible light irradiation. The formation of Ag nanoparticles on the surface of Ag3PO4:W led to a degradation rate constant 3.54 times higher than the nonirradiated sample. This higher photocatalytic activity was related to the surface plasmon resonance effect of the Ag metallic, which acts by capturing photoexcited electrons from the Ag3PO4:W, avoiding the recombination of electron-hole pairs, and thus improving the photocatalytic activity.

Metrics

Metrics Loading ...

Article Details

How to Cite
Trench, A. B., Teodoro, V., da Trindade, L. G., Machado, T. R., Minguez-Vega, G., Cordoncillo, E., Doñate-Buendía, C., Andrés, J., & Longo, E. (2022). High photocatalytic activity of Ag/Ag3PO4:W heterostructure formed by femtosecond laser irradiation. Eclética Química, 47(1SI), 20–27. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p20-27
Section
Original articles

Funding data

References

Aljerf, L. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. J. Environ. Manage. 2018, 225, 120–132. https://doi.org/10.1016/j.jenvman.2018.07.048

Assis, M.; Cordoncillo, E.; Torres-Mendieta, R.; Beltran-Mir, H.; Minguez-Vega, G.; Oliveira, R.; Leite, E. R.; Foggi, C. C.; Vergani, C. E.; Longo, E.; Andres, J. Towards the scale-up of the formation of nanoparticles on alpha-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci. Rep. 2018, 8 (1), 1884. https://doi.org/10.1038/s41598-018-19270-9

Assis, M.; Robeldo, T.; Foggi, C. C.; Kubo, A. M.; Mínguez-Vega, G.; Condoncillo, E.; Beltran-Mir, H.; Torres-Mendieta, R.; Andres, J.; Oliva, M.; Vergani, C. E.; Barbugli, P. A.; Camargo, E. R.; Borra, R. C.; Longo, E. Ag Nanoparticles/alpha-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents. Sci. Rep. 2019, 9, 9927. https://doi.org/10.1038/s41598-019-46159-y

Botelho, G.; Sczancoski, J. C.; Andres, J.; Gracia, L.; Longo, E. Experimental and Theoretical Study on the Structure, Optical Properties, and Growth of Metallic Silver Nanostructures in Ag3PO4. J. Phys. Chem. C 2015, 119 (11), 6293–6306. https://doi.org/10.1021/jp512111v

Botelho, G.; Andres, J.; Gracia, L.; Matos, L. S.; Longo, E. Photoluminescence and Photocatalytic Properties of Ag3PO4 Microcrystals: An Experimental and Theoretical Investigation. ChemPlusChem 2016, 81 (2), 202–212. https://doi.org/10.1002/cplu.201500485

Chen, X.; Dai, Y.; Wang, X. Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review. J. Alloys Compound 2015, 649, 910–932. https://doi.org/10.1016/j.jallcom.2015.07.174

Dong, W.; Lee, C. W.; Lu, X.; Sun, Y.; Hua, W.; Zhuang, G.; Zhang, S.; Chen, J.; Hou, H.; Zhao, D. Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Appl. Catal. B 2010, 95 (3-4), 197–207. https://doi.org/10.1016/j.apcatb.2009.12.025

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0

He, G.; Yang, W.; Zheng, W.; Gong, L.; Wang, X.; An, Y.; Tian, M. Facile controlled synthesis of Ag3PO4 with various morphologies for enhanced photocatalytic oxygen evolution from water splitting. RSC Advances 2019, 9 (32), 18222–18231. https://doi.org/10.1039/C9RA01306G

Jette, E. R.; Foote, F. Precision Determination of Lattice Constants. J. Chem. Phys. 1935, 3 (10), 605–616. https://doi.org/10.1063/1.1749562

Karimi-Maleh, H.; Kumar, B. G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq. 2020, 314, 113588. https://doi.org/10.1016/j.molliq.2020.113588

Kochuveedu, S. T.; Jang, Y. H.; Kim, D. H. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem. Soc. Rev. 2013, 42 (21), 8467–8493. https://doi.org/10.1039/c3cs60043b

Koyappayil, A.; Berchmans, S.; Lee, M.-H. Dual enzyme-like properties of silver nanoparticles decorated Ag2WO4 nanorods and its application for H2O2 and glucose sensing. Colloids Surf. B Biointerfaces 2020, 189, 110840. https://doi.org/10.1016/j.colsurfb.2020.110840

Lemos, P. S.; Silva, G. S.; Roca, R. A; Assis, M.; Torres-Mendieta, R.; Beltrán-Mir, H.; Mínguez-Vega, G.; Andrés, J.; and Longo, E. Laser and electron beam-induced formation of Ag/Cr structures on Ag2CrO4. Phys. Chem. Chem. Phys. 2019, 21 (11), 6101–6111. https://doi.org/10.1039/c8cp07263a

Li, X.; Xu, P.; Chen, M.; Zeng, G.; Wang, D.; Chen, F.; Tang, W.; Chen, C.; Zhang, C.; Tan, X. Application of silver phosphate-based photocatalysts: Barriers and solutions. Chem. Eng. J. 2019, 366, 339–357. https://doi.org/10.1016/j.cej.2019.02.083

Liu, Y.; Fang, L.; Lu, H.; Liu, L.; Wang, H.; Hu, C. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light. Catal. Commun. 2012, 17, 200–204. https://doi.org/10.1016/j.catcom.2011.11.001

Liu, B.; Zhao, X.; Terashima, C.; Fujishima, A.; Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 2014, 16 (19), 8751–8760. https://doi.org/10.1039/c3cp55317e

Liu, Z.; Liu, Y.; Xu, P.; Ma, Z.; Wang, J.; Yuan, H. Rational Design of Wide Spectral-Responsive Heterostructures of Au Nanorod Coupled Ag3PO4 with Enhanced Photocatalytic Performance. ACS Appl. Mater. Interfaces 2017, 9 (24), 20620–20629.

Machado, T. R.; Macedo, N. G.; Assis, M.; Doñate-Buendia, C.; Mínguez-Vega, G.; Teixeira, M. M.; Foggi, C. C.; Vergani, C. E.; Beltran-Mir, H.; Andres, J.; Cordoncillo, E.; Longo, E. From Complex Inorganic Oxides to Ag-Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS omega 2018, 3 (8), 9880–9887. https://doi.org/10.1021/acsomega.8b01264

Masse, R.; Torjman, I., Durif, A. Refinement of Crystal-Structure of Silver Monophosphate, Ag3PO4-Existence of High-Temperature Form. Zeitschrift Fur Kristallographie 1976, 144, 76–81. https://doi.org/10.1524/zkri.1976.144.1-6.76

Nubla, K.; Sandhyarani, N. Ag nanoparticles anchored Ag2WO4 nanorods: An efficient methanol tolerant and durable Pt free electro-catalyst toward oxygen reduction reaction. Electrochim. Acta 2020, 340, 135942. https://doi.org/10.1016/j.electacta.2020.135942

Santos, C. C.; Assis, M.; Machado, T. R.; Pereira, P. F. S.; Minguez‐Vega, G.; Cordoncillo, E.; Beltran‐Mir, H.; Doñate‐Buendía, C.; Andrés, J.; Longo, E. Proof‐of‐concept studies directed toward the formation of metallic Ag nanostructures from Ag3PO4 induced by electron beam and femtosecond laser. Part. Part. Syst. Charact. 2019, 36 (6), 1800533. https://doi.org/10.1002/ppsc.201800533

Santos, R. K.; Martins, T. A.; Silva, G. N.; Conceição, M. V. S.; Nogueira, I. C.; Longo, E.; Botelho, G. Ag3PO4/NiO Composites with Enhanced Photocatalytic Activity under Visible Light. ACS omega 2020, 5 (34), 21651–21661. https://doi.org/10.1021/acsomega.0c02456

Shaveisi, Y.; Sharifnia, S. Deriving Ag3PO4CaO composite as a stable and solar light photocatalyst for efficient ammonia degradation from wastewater. J. Energy Chem. 2018, 27 (1), 290–299. https://doi.org/10.1016/j.jechem.2017.06.012

Shi, H.; Yang, S.; Han, C.; Niu, Z.; Li, H.; Huang, X.; Ma, J. Fabrication of Ag/Ag3PO4/WO3 ternary nanoparticles as superior photocatalyst for phenol degradation under visible light irradiation. Solid State Sci. 2019, 96, 105967. https://doi.org/10.1016/j.solidstatesciences.2019.105967

Silva, E. Z.; Faccin, G. M.; Machado, T. R.; Macedo, N. G.; Assis, M.; Maya-Johnson, S.; Sczancoski, J. C.; Andrés, J.; Longo, E.; San-Miguel, M. A. Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. J. Phys. Chem. C 2019, 123 (17), 11310–11318. https://doi.org/10.1021/acs.jpcc.9b02107

Sofi, F. A.; Majid, K. Plasmon induced interfacial charge transfer across Zr-based metal-organic framework coupled Ag2WO4 heterojunction functionalized by Ag NPs: Efficient visible light photocatalyst. Chem. Phys. Lett. 2019, 720, 7–14. https://doi.org/10.1016/j.cplett.2019.02.005

Sousa, J. C. G.; Ribeiro, A. R.; Barbosa, M. O.; Pereira, M. F. R.; Silva, A. M. T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. https://doi.org/10.1016/j.jhazmat.2017.09.058

Tan, D.; Zhou, S.; Qiu, J.; Khusro, N. Preparation of functional nanomaterials with femtosecond laser ablation in solution. J. Photochem. Photobiol. C Photochem. Rev. 2013, 17, 50–68. https://doi.org/10.1016/j.jphotochemrev.2013.08.002

Trench, A. B.; Machado, T. R.; Gouveia, A. F.; Assis, M.; Trindade, L. G.; Santos, C.; Perrin, A.; Perrin, C.; Oliva, M.; Andrés, J.; Longo, E. Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Appl. Catal. B 2018, 238, 198–211. https://doi.org/10.1016/j.apcatb.2018.07.019

Trench, A. B.; Machado, T. R.; Gouveia, A. F.; Foggi, C. C.; Teodoro, V.; Sánchez-Montes, I.; Teixeira, M. M.; Trindade, L. G.; Jacomaci, N.; Perrin, A.; Perrin, C.; Aquino, J. M.; Andrés, J.; Longo, E. Rational Design of W-Doped Ag3PO4 as an Efficient Antibacterial Agent and Photocatalyst for Organic Pollutant Degradation. ACS omega 2020, 5 (37), 23808–23821. https://doi.org/10.1021/acsomega.0c03019

Vorobyev, A. Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 2013, 7 (3), 385–407. https://doi.org/10.1002/lpor.201200017

Wood, D. L.; Tauc, J. Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5 (8), 3144–3151. https://doi.org/10.1103/PhysRevB.5.3144

Yan, T.; Zhang, H.; Liu, Y.; Guan, W.; Long, J.; Li, W.; You, J. Fabrication of robust M/Ag3PO4(M = Pt, Pd, Au) Schottky-type heterostructures for improved visible-light photocatalysis. RSC Adv. 2014, 4 (70), 37220. https://doi.org/10.1039/C4RA06254J

Zangeneh, H.; Zinatizadeh, A. A. L.; Habibi, M.; Akia, M.; Isa, M. H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36. https://doi.org/10.1016/j.jiec.2014.10.043

Zwara, J.; Grabowska, E.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A. Shape-dependent enhanced photocatalytic effect under visible light of Ag3PO4 particles. J. Photochem. Photobiol. A Chem. 2018, 367, 240–252. https://doi.org/10.1016/j.jphotochem.2018.08.006