Levetiracetam analogs: chemoenzymatic synthesis, absolute configuration assignment and evaluation of cholinesterase inhibitory activities
Main Article Content
Abstract
A chemoenzymatic approach for the synthesis of α-N-heterocyclic ethyl- and phenylacetamides, levetiracetam analogs, is described. Eight nitrile substrates were prepared through the N-alkylation of heterocycles (2-pyrrolidinone, 2-piperidinone, 2-oxopiperazine and 1-methylpiperazine) directly from hydroxyl group of ethyl and phenyl α-hydroxynitriles with yield of 35−71% after 12 h. Twenty nitrile hydratases (NHases) were screened and showed that the N-derivatives lactam substrates led to their correspondent amides by Co-type NHase with conversion and enantiomeric excess of up to 47.5 and 52.3% for (S)-enantiomer, while the piperazine substrates underwent spontaneous decomposition by retro-Strecker reaction. In order to avoid a retro-Strecker reaction of α-aminonitriles, ionic liquids and polyethylene glycol (PEG400) were evaluated as alternative green solvents to aqueous buffered solutions in different proportions. Temperature was another parameter investigated during reaction-medium engineering for process optimization. However, unconventional reaction media and low temperature significantly reduced the NHase activity. The absolute configuration of α-N-heterocyclic ethyl- and phenylacetamides, some of which were new compounds, was determined using electronic circular dichroism (ECD) spectroscopy. Additionally, their potential as cholinesterase’s inhibitors was evaluated.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2014/50249-8; 2010/02305-5; 2013/16636-1; 2014/50926-0; 2014/25222-9; 2019/22319-5; 2019/15230-8 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 465637/2014-0 -
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Grant numbers Finance Code 001 -
GlaxoSmithKline
References
Ahmad, G.; Rasool, N.; Rizwan, K.; Imran, I.; Zahoor, A. F.; Zubair, M.; Sadiq, A.; Rashid, U. Synthesis, in-Vitro Cholinesterase Inhibition, In-Vivo Anticonvulsant Activity And In-Silico Exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg. Chem. 2019, 92, 103216. https://doi.org/10.1016/j.bioorg.2019.103216
Altenkämper, M.; Bechem, B.; Perruchon, J.; Heinrich, S.; Mädel, A.; Ortmann, R.; Dahse, H.-M.; Freunscht, E.; Wang, Y.; Rath, J.; Stich, A.; Hitzler, M.; Chiba, P.; Lanzer, M.; Schlitzer, M. Antimalarial and antitrypanosomal activity of a series of amide and sulfonamide derivatives of a 2,5-diaminobenzophenone. Bioorg. Med. Chem. 2009, 17 (22), 7690–7697. https://doi.org/10.1016/j.bmc.2009.09.043
Anuradha, S.; Preeti, K. Levetiracetam with its therapeutic potentials. Int. J. Univers. Pharm. Bio Sci. 2013, 2 (5), 45–58.
Bhalla, T. C.; Kumar, V.; Kumar, V.; Thakur, N.; Savitri. Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl. Biochem. Biotechnol. 2018, 185 (4), 925–946. https://doi.org/10.1007/s12010-018-2705-7
Bisogno, F. R.; López-Vidal, M. G.; de Gonzalo, G. Organocatalysis and biocatalysis hand in hand: Combining catalysts in one-pot procedures. Adv. Synth. Catal. 2017, 359 (12), 2026–2049. https://doi.org/10.1002/adsc.201700158
Brazil. Ministério da Saúde. Portaria nº 56, de 1 de dezembro de 2017. Fica incorporado o levetiracetam para o tratamento da epilepsia, no âmbito do Sistema Único de Saúde – SUS. Brasília: Diário Oficial da União, 2017. https://bvsms.saude.gov.br/bvs/saudelegis/sctie/2017/prt0056_05_12_2017.html (accessed 2021-07-19).
Cantone, S.; Hanefeld, U.; Basso, A. Biocatalysis in non-conventional media—ionic liquids, supercritical fluids and the gas phase. Green Chem. 2007, 9 (9), 954–971. https://doi.org/10.1039/b618893a
Carmona, A. T.; Fialová, P.; Křen, V.; Ettrich, R.; Martínková, L.; Moreno-Vargas, A. J.; González, C.; Robina, I. Cyanodeoxy-glycosyl derivatives as substrates for enzymatic reactions. Eur. J. Org. Chem. 2006, 2006 (8), 1876–1885. https://doi.org/10.1002/ejoc.200500755
Casey, M.; Leonard, J.; Lygo, B.; Procter, G. Working up the reaction. In Advanced practical organic chemistry; Springer, 1990; pp 141–187. https://doi.org/10.1007/978-1-4899-6643-8
Chaudhry, S. A.; Jong, G.; Koren, G. The fetal safety of Levetiracetam: A systematic review. Reprod. Toxicol. 2014, 46, 40–45. https://doi.org/10.1016/j.reprotox.2014.02.004
Chen, Z.; Meng, L.; Ding, Z.; Hu, J. Construction of versatile N-heterocycles from in situ generated 1,2-Diaza-1,3-dienes. Curr. Org. Chem. 2019, 23 (2), 164–187. https://doi.org/10.2174/1385272823666190227162840
Choi, I.; Chung, H.; Park, J. W.; Chung, Y. K. Active and recyclable catalytic synthesis of indoles by reductive cyclization of 2-(2-Nitroaryl)acetonitriles in the presence of Co-Rh heterobimetallic nanoparticles with atmospheric hydrogen under mild conditions. Org. Lett. 2016, 18 (21), 5508–5511. https://doi.org/10.1021/acs.orglett.6b02659
D’Antona, N.; Morrone, R. Biocatalysis: Green transformations of nitrile function. In Green chemistry for environmental sustainability; Sanjay, K., Sharma, A. M., Eds.; CRC Press - Taylor and Francis, 2010.
Dupont, J.; Consorti, C. S.; Suarez, P. A. Z.; Souza, R. F. Preparation of 1-Butyl-3-Methyl Imidazolium-Based room temperature ionic liquids. Org. Synth. 2002, 79, 236. https://doi.org/10.15227/orgsyn.079.0236
Gaussian 09. Revision A.02; Gaussian, Inc.: Wallingford, 2016.
Giorgi, F. S.; Guida, M.; Vergallo, A.; Bonuccelli, U.; Zaccara, G. Treatment of epilepsy in patients with Alzheimer’s disease. Expert Rev. Neurother. 2017, 17 (3), 309–318. https://doi.org/10.1080/14737175.2017.1243469
Gong, J.-S.; Shi, J.-S.; Lu, Z.-M.; Li, H.; Zhou, Z.-M.; Xu, Z.-H. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: Recent insights and promises. Crit. Rev. Biotechnol. 2017, 37 (1), 69–81. https://doi.org/10.3109/07388551.2015.1120704
González-Vera, J. A.; García-López, M. T.; Herranz, R. Molecular diversity via amino acid derived α-amino nitriles: Synthesis of spirocyclic 2,6-Dioxopiperazine Derivatives. J. Org. Chem. 2005, 70 (9), 3660–3666. https://doi.org/10.1021/jo050146m
Hong, F.; Xia, Z.; Zhu, D.; Wu, H.; Liu, J.; Zeng, Z. N-terminal strategy (N1-N4) toward high performance liquid crystal materials. Tetrahedron 2016, 72 (10), 1285–1292. https://doi.org/10.1016/j.tet.2015.11.013
Hönig, M.; Sondermann, P.; Turner, N. J.; Carreira, E. M. Enantioselective chemo- and biocatalysis: Partners in retrosynthesis. Angew. Chem. Int. Ed. 2017, 56 (31), 8942–8973. https://doi.org/10.1002/anie.201612462
Jenner, G. Homogeneous ruthenium catalysis of N-alkylation of amides and lactams. J. Mol. Catal. 1989, 55 (1), 241–246. https://doi.org/10.1016/0304-5102(89)80257-3
Jiao, S.; Li, F.; Yu, H.; Shen, Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl. Microbiol. Biotechnol. 2020, 104, 1001–1012. https://doi.org/10.1007/s00253-019-10284-5
Kenda, B. M.; Matagne, A. C.; Talaga, P. E.; Pasau, P. M.; Differding, E.; Lallemand, B. I.; Frycia, A. M.; Moureau, F. G.; Klitgaard, H. V.; Gillard, M. R.; Fuks, B.; Michel, P. Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem. 2004, 47 (3), 530–549. https://doi.org/10.1021/jm030913e
Krasowski, M. D.; McMillin, G. A. Advances in anti-epileptic drug testing. Clin. Chim. Acta 2014, 436, 224–236. https://doi.org/10.1016/j.cca.2014.06.002
Kuca, K.; Soukup, O.; Maresova, P.; Korabecny, J.; Nepovimova, E.; Klimova, B.; Honegr, J.; Ramalho, T. C.; França, T. C. C. Current approaches against Alzheimer’s disease in clinical trials. J. Braz. Chem. Soc. 2016, 27 (4), 641–649. https://doi.org/10.5935/0103-5053.20160048
Kumar, D.; Grapperhaus, C. A. Sulfur-oxygenation and functionalmodels of nitrile hydratase. In Bioinspired catalysis; Weigand, W., Schollhammer, P., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, 2014. https://doi.org/10.1002/9783527664160.ch12
Li, L.; Si, Y.-K. Study on the absolute configuration of Levetiracetam via density functional theory calculations of electronic circular dichroism and optical rotatory dispersion. J. Pharm. Biomed. Anal. 2011, 56 (3), 465–470. https://doi.org/10.1016/j.jpba.2011.07.002
Liu, S.; Zhao, Z.; Wang, Y. Construction of N‐heterocycles through cyclization of tertiary amines. Chem. Eur. J. 2019, 25 (10), 2423–2441 https://doi.org/10.1002/chem.201803960
Lyseng-Williamson, K. A. Spotlight on Levetiracetam in epilepsy. CNS Drugs 2011a, 25, 901–905. https://doi.org/10.2165/11208340-000000000-00000
Lyseng-Williamson, K. A. Levetiracetam: A review of its use in epilepsy. Drugs 2011b, 71 (4), 489–514.
Mashweu, A. R.; Chhiba-Govindjee, V. P.; Bode, M. L.; Brady, D. Substrate profiling of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870. Molecules 2020, 25 (1), 238. https://doi.org/10.3390/molecules25010238
Mitra, S.; Holz, R. C. Unraveling the catalytic mechanism of nitrile hydratases. J. Biol. Chem. 2007, 282 (10), 7397–7404. https://doi.org/10.1074/jbc.M604117200
Miyanaga, A.; Fushinobu, S.; Ito, K.; Shoun, H.; Wakagi, T. Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Eur. J. Biochem. 2004, 271 (2), 429–438. https://doi.org/10.1046/j.1432-1033.2003.03943.x
Narczyk, A.; Mrozowicz, M.; Stecko, S. Total synthesis of Levetiracetam. Org. Biomol. Chem. 2019, 17 (10), 2770–2775. https://doi.org/10.1039/C9OB00111E
Nelp, M. T.; Astashkin, A. V.; Breci, L. A.; McCarty, R. M.; Bandarian, V. The alpha subunit of nitrile hydratase is sufficient for catalytic activity and post-translational modification. Biochemistry 2014, 53 (24), 3990–3994. https://doi.org/10.1021/bi500260j
Prasad, S.; Bhalla, T. C. Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol. Adv. 2010, 28 (6), 725–741. https://doi.org/10.1016/j.biotechadv.2010.05.020
Prozomix. Enzyme Catalogue. 2020. http://www.prozomix.com/products/listing?searchby=name&searchby_name=Nitrile+hydratase&category=21&x=53&y=3 (accessed 2020-01-27).
Saini, M. S.; Kumar, A.; Dwivedi, J.; Singh, R. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res. 2013, 4 (3), 66–77.
Seidl, C.; Vilela, A. F. L.; Lima, J. M.; Leme, G. M.; Cardoso, C. L. A novel on-flow mass spectrometry-based dual enzyme assay. Anal. Chim. Acta 2019, 1072, 81–86. https://doi.org/10.1016/j.aca.2019.04.057
Sheldon, R. A.; Pereira, P. C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017, 46 (10), 2678–2691. https://doi.org/10.1039/C6CS00854B
Shen, Y.; Du, F.; Gao, W.; Wang, A.; Chen, C. Stereoselective nitrile hydratase. Afr. J. Microbiol. Res. 2012, 6 (32), 6114–6121. https://doi.org/10.5897/AJMR12.101
Siebel, A. M.; Rico, E. P.; Capiotti, K. M.; Piato, A. L.; Cusinato, C. T.; Franco, T. M. A.; Bogo, M. R.; Bonan, C. D. In vitro effects of antiepileptic drugs on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol. Vitro 2010, 24 (4), 1279–1284. https://doi.org/10.1016/j.tiv.2010.03.018
Sola, I.; Aso, E.; Frattini, D.; López-González, I.; Espargaró, A.; Sabaté, R.; Di Pietro, O.; Luque, F. J.; Clos, M. V.; Ferrer, I.; Muñoz-Torrero, D. Novel Levetiracetam derivatives that are effective against the alzheimer-like phenotype in mice: Synthesis, in vitro, ex vivo, and in vivo efficacy studies. J. Med. Chem. 2015, 58 (15), 6018–6032. https://doi.org/10.1021/acs.jmedchem.5b00624
Souza, R. O. M. A.; Miranda, L. S. M.; Bornscheuer, U. T. A retrosynthesis approach for biocatalysis in organic synthesis. Chem. Eur. J. 2017, 23 (50), 12040–12063. https://doi.org/10.1002/chem.201702235
Supreetha, K.; Rao, S. N.; Srividya, D.; Anil, H. S.; Kiran, S. Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol. Biol. Rep. 2019, 46, 4661–4673. https://doi.org/10.1007/s11033-019-04811-w
Tao, J.; Liu, J.; Chen, Z. Some recent examples in developing biocatalytic pharmaceutical processes. In Asymmetric catalysis on industrial scale: Challenges, approaches and solutions; Hans‐Ulrich, B., Hans‐Jürgen, F., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, 2010. https://doi.org/10.1002/9783527630639.ch1
Tucker, J. L.; Xu, L.; Yu, W.; Scott, R. W.; Zhao, L.; Ran, N. Chemoenzymatic processes for preparation of Levetiracetam. US WO2009009117, 2009.
U.S Department of Health and Human Services, 2014. Levetiracetam for Alzheimer’s disease-associated epileptiform activity. https://www.nia.nih.gov/alzheimers/clinical-trials/levetiracetam-alzheimers-disease-associated-epileptiform-activity (accessed 2020-04-29).
UCB. 2018 Full Year Results. UCB https://www.ucb.com/_up/ucb_com_ir/documents/2018_FY_results_presentation_-_final.pdf (accessed (accessed 2020-01-17).
Uges, J. W. F.; Vecht, C, J. Levetiracetam. In Atlas of Epilepsies; Panayiotopoulos, C. P., Ed.; Springer London, 2010. https://doi.org/10.1007/978-1-84882-128-6_271
van Pelt, S.; Zhang, M.; Otten, L. G.; Holt, J.; Sorokin, D. Y.; van Rantwijk, F.; Black, G. W.; Perry, J. J.; Sheldon, R. A. Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases. Org. Biomol. Chem. 2011, 9 (8), 3011–3019. https://doi.org/10.1039/c0ob01067g
Vilela, A. F. L.; Seidl, C.; Lima, J. M.; Cardoso, C. L. An improved immobilized enzyme reactor-mass spectrometry-based label free assay for butyrylcholinesterase ligand screening. Anal. Biochem. 2018, 549, 53–57. https://doi.org/10.1016/j.ab.2018.03.012
Wang, M.-X. Progress of enantioselective nitrile biotransformations in organic synthesis. CHIMIA International Journal for Chemistry 2009, 63 (6), 331–333. https://doi.org/10.2533/chimia.2009.331
Wang, M.-X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res. 2015, 48 (3), 602–611. https://doi.org/10.1021/ar500406s
Wen, Y.; Liang, M.; Wang, Y.; Ren, W.; Lü, X. Perfectly green organocatalysis: Quaternary ammonium base triggered cyanosilylation of aldehydes. Chinese J. Chem. 2012, 30 (9), 2109–2114. https://doi.org/10.1002/cjoc.201200598
Yasukawa, K.; Hasemi, R.; Asano, Y. Dynamic kinetic resolution of α-aminonitriles to form chiral α-amino acids. Adv. Synth. Catal. 2011, 353 (13), 2328–2332. https://doi.org/10.1002/adsc.201100360.
Young, S. D.; Buse, C. T.; Heathcock, C. H. 2-Methyl-2-(Trimethylsiloxy)Pentan-3-one. In Organic Syntheses; John Wiley & Sons, 2003. https://doi.org/10.1002/0471264180.os063.09
Zhang, J.; Wang, H.; Ma, Y.; Wang, Y.; Zhou, Z.; Tang, C. CaF2 Catalyzed SN2 type chlorodehydroxylation of chiral secondary alcohols with thionyl chloride: A practical and convenient approach for the preparation of optically active chloroalkanes. Tetrahedron Lett. 2013, 54 (18), 2261–2263. https://doi.org/10.1016/j.tetlet.2013.02.079