Levetiracetam analogs: chemoenzymatic synthesis, absolute configuration assignment and evaluation of cholinesterase inhibitory activities

Main Article Content

Cintia Duarte de Freitas Milagre
Bruno Sergio do Amaral
João Marcos Batista Junior
Adriana Ferreira Lopes Vilela
Carmen Lúcia Cardoso
Humberto Marcio Santos Milagre

Abstract

A chemoenzymatic approach for the synthesis of α-N-heterocyclic ethyl- and phenylacetamides, levetiracetam analogs, is described. Eight nitrile substrates were prepared through the N-alkylation of heterocycles (2-pyrrolidinone, 2-piperidinone, 2-oxopiperazine and 1-methylpiperazine) directly from hydroxyl group of ethyl and phenyl α-hydroxynitriles with yield of 35−71% after 12 h. Twenty nitrile hydratases (NHases) were screened and showed that the N-derivatives lactam substrates led to their correspondent amides by Co-type NHase with conversion and enantiomeric excess of up to 47.5 and 52.3% for (S)-enantiomer, while the piperazine substrates underwent spontaneous decomposition by retro-Strecker reaction. In order to avoid a retro-Strecker reaction of α-aminonitriles, ionic liquids and polyethylene glycol (PEG400) were evaluated as alternative green solvents to aqueous buffered solutions in different proportions. Temperature was another parameter investigated during reaction-medium engineering for process optimization. However, unconventional reaction media and low temperature significantly reduced the NHase activity. The absolute configuration of α-N-heterocyclic ethyl- and phenylacetamides, some of which were new compounds, was determined using electronic circular dichroism (ECD) spectroscopy. Additionally, their potential as cholinesterase’s inhibitors was evaluated.

Metrics

Metrics Loading ...

Article Details

How to Cite
Milagre, C. D. de F., do Amaral, B. S., Batista Junior, J. M., Vilela, A. F. L., Cardoso, C. L., & Milagre, H. M. S. (2022). Levetiracetam analogs: chemoenzymatic synthesis, absolute configuration assignment and evaluation of cholinesterase inhibitory activities. Eclética Química, 47(2), 17–35. https://doi.org/10.26850/1678-4618eqj.v47.2.2022.p17-35
Section
Original articles

Funding data

References

Ahmad, G.; Rasool, N.; Rizwan, K.; Imran, I.; Zahoor, A. F.; Zubair, M.; Sadiq, A.; Rashid, U. Synthesis, in-Vitro Cholinesterase Inhibition, In-Vivo Anticonvulsant Activity And In-Silico Exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg. Chem. 2019, 92, 103216. https://doi.org/10.1016/j.bioorg.2019.103216

Altenkämper, M.; Bechem, B.; Perruchon, J.; Heinrich, S.; Mädel, A.; Ortmann, R.; Dahse, H.-M.; Freunscht, E.; Wang, Y.; Rath, J.; Stich, A.; Hitzler, M.; Chiba, P.; Lanzer, M.; Schlitzer, M. Antimalarial and antitrypanosomal activity of a series of amide and sulfonamide derivatives of a 2,5-diaminobenzophenone. Bioorg. Med. Chem. 2009, 17 (22), 7690–7697. https://doi.org/10.1016/j.bmc.2009.09.043

Anuradha, S.; Preeti, K. Levetiracetam with its therapeutic potentials. Int. J. Univers. Pharm. Bio Sci. 2013, 2 (5), 45–58.

Bhalla, T. C.; Kumar, V.; Kumar, V.; Thakur, N.; Savitri. Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl. Biochem. Biotechnol. 2018, 185 (4), 925–946. https://doi.org/10.1007/s12010-018-2705-7

Bisogno, F. R.; López-Vidal, M. G.; de Gonzalo, G. Organocatalysis and biocatalysis hand in hand: Combining catalysts in one-pot procedures. Adv. Synth. Catal. 2017, 359 (12), 2026–2049. https://doi.org/10.1002/adsc.201700158

Brazil. Ministério da Saúde. Portaria nº 56, de 1 de dezembro de 2017. Fica incorporado o levetiracetam para o tratamento da epilepsia, no âmbito do Sistema Único de Saúde – SUS. Brasília: Diário Oficial da União, 2017. https://bvsms.saude.gov.br/bvs/saudelegis/sctie/2017/prt0056_05_12_2017.html (accessed 2021-07-19).

Cantone, S.; Hanefeld, U.; Basso, A. Biocatalysis in non-conventional media—ionic liquids, supercritical fluids and the gas phase. Green Chem. 2007, 9 (9), 954–971. https://doi.org/10.1039/b618893a

Carmona, A. T.; Fialová, P.; Křen, V.; Ettrich, R.; Martínková, L.; Moreno-Vargas, A. J.; González, C.; Robina, I. Cyanodeoxy-glycosyl derivatives as substrates for enzymatic reactions. Eur. J. Org. Chem. 2006, 2006 (8), 1876–1885. https://doi.org/10.1002/ejoc.200500755

Casey, M.; Leonard, J.; Lygo, B.; Procter, G. Working up the reaction. In Advanced practical organic chemistry; Springer, 1990; pp 141–187. https://doi.org/10.1007/978-1-4899-6643-8

Chaudhry, S. A.; Jong, G.; Koren, G. The fetal safety of Levetiracetam: A systematic review. Reprod. Toxicol. 2014, 46, 40–45. https://doi.org/10.1016/j.reprotox.2014.02.004

Chen, Z.; Meng, L.; Ding, Z.; Hu, J. Construction of versatile N-heterocycles from in situ generated 1,2-Diaza-1,3-dienes. Curr. Org. Chem. 2019, 23 (2), 164–187. https://doi.org/10.2174/1385272823666190227162840

Choi, I.; Chung, H.; Park, J. W.; Chung, Y. K. Active and recyclable catalytic synthesis of indoles by reductive cyclization of 2-(2-Nitroaryl)acetonitriles in the presence of Co-Rh heterobimetallic nanoparticles with atmospheric hydrogen under mild conditions. Org. Lett. 2016, 18 (21), 5508–5511. https://doi.org/10.1021/acs.orglett.6b02659

D’Antona, N.; Morrone, R. Biocatalysis: Green transformations of nitrile function. In Green chemistry for environmental sustainability; Sanjay, K., Sharma, A. M., Eds.; CRC Press - Taylor and Francis, 2010.

Dupont, J.; Consorti, C. S.; Suarez, P. A. Z.; Souza, R. F. Preparation of 1-Butyl-3-Methyl Imidazolium-Based room temperature ionic liquids. Org. Synth. 2002, 79, 236. https://doi.org/10.15227/orgsyn.079.0236

Gaussian 09. Revision A.02; Gaussian, Inc.: Wallingford, 2016.

Giorgi, F. S.; Guida, M.; Vergallo, A.; Bonuccelli, U.; Zaccara, G. Treatment of epilepsy in patients with Alzheimer’s disease. Expert Rev. Neurother. 2017, 17 (3), 309–318. https://doi.org/10.1080/14737175.2017.1243469

Gong, J.-S.; Shi, J.-S.; Lu, Z.-M.; Li, H.; Zhou, Z.-M.; Xu, Z.-H. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: Recent insights and promises. Crit. Rev. Biotechnol. 2017, 37 (1), 69–81. https://doi.org/10.3109/07388551.2015.1120704

González-Vera, J. A.; García-López, M. T.; Herranz, R. Molecular diversity via amino acid derived α-amino nitriles: Synthesis of spirocyclic 2,6-Dioxopiperazine Derivatives. J. Org. Chem. 2005, 70 (9), 3660–3666. https://doi.org/10.1021/jo050146m

Hong, F.; Xia, Z.; Zhu, D.; Wu, H.; Liu, J.; Zeng, Z. N-terminal strategy (N1-N4) toward high performance liquid crystal materials. Tetrahedron 2016, 72 (10), 1285–1292. https://doi.org/10.1016/j.tet.2015.11.013

Hönig, M.; Sondermann, P.; Turner, N. J.; Carreira, E. M. Enantioselective chemo- and biocatalysis: Partners in retrosynthesis. Angew. Chem. Int. Ed. 2017, 56 (31), 8942–8973. https://doi.org/10.1002/anie.201612462

Jenner, G. Homogeneous ruthenium catalysis of N-alkylation of amides and lactams. J. Mol. Catal. 1989, 55 (1), 241–246. https://doi.org/10.1016/0304-5102(89)80257-3

Jiao, S.; Li, F.; Yu, H.; Shen, Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl. Microbiol. Biotechnol. 2020, 104, 1001–1012. https://doi.org/10.1007/s00253-019-10284-5

Kenda, B. M.; Matagne, A. C.; Talaga, P. E.; Pasau, P. M.; Differding, E.; Lallemand, B. I.; Frycia, A. M.; Moureau, F. G.; Klitgaard, H. V.; Gillard, M. R.; Fuks, B.; Michel, P. Discovery of 4-substituted pyrrolidone butanamides as new agents with significant antiepileptic activity. J. Med. Chem. 2004, 47 (3), 530–549. https://doi.org/10.1021/jm030913e

Krasowski, M. D.; McMillin, G. A. Advances in anti-epileptic drug testing. Clin. Chim. Acta 2014, 436, 224–236. https://doi.org/10.1016/j.cca.2014.06.002

Kuca, K.; Soukup, O.; Maresova, P.; Korabecny, J.; Nepovimova, E.; Klimova, B.; Honegr, J.; Ramalho, T. C.; França, T. C. C. Current approaches against Alzheimer’s disease in clinical trials. J. Braz. Chem. Soc. 2016, 27 (4), 641–649. https://doi.org/10.5935/0103-5053.20160048

Kumar, D.; Grapperhaus, C. A. Sulfur-oxygenation and functionalmodels of nitrile hydratase. In Bioinspired catalysis; Weigand, W., Schollhammer, P., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, 2014. https://doi.org/10.1002/9783527664160.ch12

Li, L.; Si, Y.-K. Study on the absolute configuration of Levetiracetam via density functional theory calculations of electronic circular dichroism and optical rotatory dispersion. J. Pharm. Biomed. Anal. 2011, 56 (3), 465–470. https://doi.org/10.1016/j.jpba.2011.07.002

Liu, S.; Zhao, Z.; Wang, Y. Construction of N‐heterocycles through cyclization of tertiary amines. Chem. Eur. J. 2019, 25 (10), 2423–2441 https://doi.org/10.1002/chem.201803960

Lyseng-Williamson, K. A. Spotlight on Levetiracetam in epilepsy. CNS Drugs 2011a, 25, 901–905. https://doi.org/10.2165/11208340-000000000-00000

Lyseng-Williamson, K. A. Levetiracetam: A review of its use in epilepsy. Drugs 2011b, 71 (4), 489–514.

Mashweu, A. R.; Chhiba-Govindjee, V. P.; Bode, M. L.; Brady, D. Substrate profiling of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870. Molecules 2020, 25 (1), 238. https://doi.org/10.3390/molecules25010238

Mitra, S.; Holz, R. C. Unraveling the catalytic mechanism of nitrile hydratases. J. Biol. Chem. 2007, 282 (10), 7397–7404. https://doi.org/10.1074/jbc.M604117200

Miyanaga, A.; Fushinobu, S.; Ito, K.; Shoun, H.; Wakagi, T. Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. Eur. J. Biochem. 2004, 271 (2), 429–438. https://doi.org/10.1046/j.1432-1033.2003.03943.x

Narczyk, A.; Mrozowicz, M.; Stecko, S. Total synthesis of Levetiracetam. Org. Biomol. Chem. 2019, 17 (10), 2770–2775. https://doi.org/10.1039/C9OB00111E

Nelp, M. T.; Astashkin, A. V.; Breci, L. A.; McCarty, R. M.; Bandarian, V. The alpha subunit of nitrile hydratase is sufficient for catalytic activity and post-translational modification. Biochemistry 2014, 53 (24), 3990–3994. https://doi.org/10.1021/bi500260j

Prasad, S.; Bhalla, T. C. Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol. Adv. 2010, 28 (6), 725–741. https://doi.org/10.1016/j.biotechadv.2010.05.020

Prozomix. Enzyme Catalogue. 2020. http://www.prozomix.com/products/listing?searchby=name&searchby_name=Nitrile+hydratase&category=21&x=53&y=3 (accessed 2020-01-27).

Saini, M. S.; Kumar, A.; Dwivedi, J.; Singh, R. A review: Biological significances of heterocyclic compounds. Int. J. Pharm. Sci. Res. 2013, 4 (3), 66–77.

Seidl, C.; Vilela, A. F. L.; Lima, J. M.; Leme, G. M.; Cardoso, C. L. A novel on-flow mass spectrometry-based dual enzyme assay. Anal. Chim. Acta 2019, 1072, 81–86. https://doi.org/10.1016/j.aca.2019.04.057

Sheldon, R. A.; Pereira, P. C. Biocatalysis engineering: The big picture. Chem. Soc. Rev. 2017, 46 (10), 2678–2691. https://doi.org/10.1039/C6CS00854B

Shen, Y.; Du, F.; Gao, W.; Wang, A.; Chen, C. Stereoselective nitrile hydratase. Afr. J. Microbiol. Res. 2012, 6 (32), 6114–6121. https://doi.org/10.5897/AJMR12.101

Siebel, A. M.; Rico, E. P.; Capiotti, K. M.; Piato, A. L.; Cusinato, C. T.; Franco, T. M. A.; Bogo, M. R.; Bonan, C. D. In vitro effects of antiepileptic drugs on acetylcholinesterase and ectonucleotidase activities in zebrafish (Danio rerio) brain. Toxicol. Vitro 2010, 24 (4), 1279–1284. https://doi.org/10.1016/j.tiv.2010.03.018

Sola, I.; Aso, E.; Frattini, D.; López-González, I.; Espargaró, A.; Sabaté, R.; Di Pietro, O.; Luque, F. J.; Clos, M. V.; Ferrer, I.; Muñoz-Torrero, D. Novel Levetiracetam derivatives that are effective against the alzheimer-like phenotype in mice: Synthesis, in vitro, ex vivo, and in vivo efficacy studies. J. Med. Chem. 2015, 58 (15), 6018–6032. https://doi.org/10.1021/acs.jmedchem.5b00624

Souza, R. O. M. A.; Miranda, L. S. M.; Bornscheuer, U. T. A retrosynthesis approach for biocatalysis in organic synthesis. Chem. Eur. J. 2017, 23 (50), 12040–12063. https://doi.org/10.1002/chem.201702235

Supreetha, K.; Rao, S. N.; Srividya, D.; Anil, H. S.; Kiran, S. Advances in cloning, structural and bioremediation aspects of nitrile hydratases. Mol. Biol. Rep. 2019, 46, 4661–4673. https://doi.org/10.1007/s11033-019-04811-w

Tao, J.; Liu, J.; Chen, Z. Some recent examples in developing biocatalytic pharmaceutical processes. In Asymmetric catalysis on industrial scale: Challenges, approaches and solutions; Hans‐Ulrich, B., Hans‐Jürgen, F., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA, 2010. https://doi.org/10.1002/9783527630639.ch1

Tucker, J. L.; Xu, L.; Yu, W.; Scott, R. W.; Zhao, L.; Ran, N. Chemoenzymatic processes for preparation of Levetiracetam. US WO2009009117, 2009.

U.S Department of Health and Human Services, 2014. Levetiracetam for Alzheimer’s disease-associated epileptiform activity. https://www.nia.nih.gov/alzheimers/clinical-trials/levetiracetam-alzheimers-disease-associated-epileptiform-activity (accessed 2020-04-29).

UCB. 2018 Full Year Results. UCB https://www.ucb.com/_up/ucb_com_ir/documents/2018_FY_results_presentation_-_final.pdf (accessed (accessed 2020-01-17).

Uges, J. W. F.; Vecht, C, J. Levetiracetam. In Atlas of Epilepsies; Panayiotopoulos, C. P., Ed.; Springer London, 2010. https://doi.org/10.1007/978-1-84882-128-6_271

van Pelt, S.; Zhang, M.; Otten, L. G.; Holt, J.; Sorokin, D. Y.; van Rantwijk, F.; Black, G. W.; Perry, J. J.; Sheldon, R. A. Probing the enantioselectivity of a diverse group of purified cobalt-centred nitrile hydratases. Org. Biomol. Chem. 2011, 9 (8), 3011–3019. https://doi.org/10.1039/c0ob01067g

Vilela, A. F. L.; Seidl, C.; Lima, J. M.; Cardoso, C. L. An improved immobilized enzyme reactor-mass spectrometry-based label free assay for butyrylcholinesterase ligand screening. Anal. Biochem. 2018, 549, 53–57. https://doi.org/10.1016/j.ab.2018.03.012

Wang, M.-X. Progress of enantioselective nitrile biotransformations in organic synthesis. CHIMIA International Journal for Chemistry 2009, 63 (6), 331–333. https://doi.org/10.2533/chimia.2009.331

Wang, M.-X. Enantioselective biotransformations of nitriles in organic synthesis. Acc. Chem. Res. 2015, 48 (3), 602–611. https://doi.org/10.1021/ar500406s

Wen, Y.; Liang, M.; Wang, Y.; Ren, W.; Lü, X. Perfectly green organocatalysis: Quaternary ammonium base triggered cyanosilylation of aldehydes. Chinese J. Chem. 2012, 30 (9), 2109–2114. https://doi.org/10.1002/cjoc.201200598

Yasukawa, K.; Hasemi, R.; Asano, Y. Dynamic kinetic resolution of α-aminonitriles to form chiral α-amino acids. Adv. Synth. Catal. 2011, 353 (13), 2328–2332. https://doi.org/10.1002/adsc.201100360.

Young, S. D.; Buse, C. T.; Heathcock, C. H. 2-Methyl-2-(Trimethylsiloxy)Pentan-3-one. In Organic Syntheses; John Wiley & Sons, 2003. https://doi.org/10.1002/0471264180.os063.09

Zhang, J.; Wang, H.; Ma, Y.; Wang, Y.; Zhou, Z.; Tang, C. CaF2 Catalyzed SN2 type chlorodehydroxylation of chiral secondary alcohols with thionyl chloride: A practical and convenient approach for the preparation of optically active chloroalkanes. Tetrahedron Lett. 2013, 54 (18), 2261–2263. https://doi.org/10.1016/j.tetlet.2013.02.079