Influence of Zr-metal-organic framework coupling on the morphology and photoelectrochemical properties of SnO2

Main Article Content

Letícia Guerreiro da Trindade
Letícia Zanchet
Bianca Lins Zambon da Silva
Elson Longo
Tatiana Martelli Mazzo

Abstract

In this work, we investigated the effect of the coupling of the Zr-metal-organic framework (MOF) and SnO2 and its potential for application as photoelectrode in solar cells. Coupling was performed by mechanical mixture followed by heat treatment. The effect of adding two amounts of Zr-MOF (25 and 50 wt%) on morphology and photoelectrochemical properties was investigated. The results of the J-V curves show that the coupling of 25 wt% Zr-MOF with SnO2 improved the charge transfer characteristics under light irradiated in 1.6 times compared to the pure SnO2.

Metrics

Metrics Loading ...

Article Details

How to Cite
da Trindade, L. G., Zanchet, L., da Silva, B. L. Z., Longo, E., & Mazzo, T. M. (2022). Influence of Zr-metal-organic framework coupling on the morphology and photoelectrochemical properties of SnO2. Eclética Química, 47(1SI), 120–129. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p120-129
Section
Original articles

References

Abdelkader, E.; Nadjia, L.; Ahmed, B. Preparation and characterization of novel CuBi2O4/SnO2 p–n heterojunction with enhanced photocatalytic performance under UVA light irradiation. J. King Saud Univ. Sci. 2015, 27 (1), 76–91. https://doi.org/10.1016/j.jksus.2014.06.002

Agbo, S. N.; Merdzhanova, T.; Yu, S.; Tempel, H.; Kungl, H.; Eichel, R.-A.; Rau, U.; Astakhov, O. Photoelectrochemical application of thin-film silicon triple-junction solar cell in batteries. Phys. Status Solidi A 2016, 213 (7), 1926–1931. https://doi.org/10.1002/pssa.201532918

Bao, C.; Zhou, L.; Shao, Y.; Wu, Q.; Zhu, H.; Li, K. A novel Au-loaded magnetic metal organic framework/graphene multifunctional composite: Green synthesis and catalytic application. J. Ind. Eng. Chem. 2016, 38, 132–140. https://doi.org/10.1016/j.jiec.2016.04.014

Bashar, H.; Bhuiyan, M. M. H.; Hossain, M. R.; Kabir, F.; Rahaman, M. S.; Manir, M. S.; Ikegami, T. Study on combination of natural red and green dyes to improve the power conversion efficiency of dye sensitized solar cells. Optik 2019, 185, 620–625. https://doi.org/10.1016/j.ijleo.2019.03.043

Bhogaita, M.; Yadav, S.; Bhanushali, A. U.; Parsola, A. A.; Nalini, R. P. Synthesis and characterization of TiO2 thin films for DSSC prototype. Mater. Today: Proc. 2016, 3 (6), 2052–2061. https://doi.org/10.1016/j.matpr.2016.04.108

Bora, A.; Mohan, K.; Phukan, P.; Dolui, S. K. A low cost carbon black/polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells. Electrochim. Acta 2018, 259, 233–244. https://doi.org/10.1016/j.electacta.2017.10.156

Butova, V. V.; Vetlitsyna-Novikova, K. S.; Pankin, I. A.; Charykov, K. M.; Trigub, A. L.; Soldatov, A. V. Microwave synthesis and phase transition in UiO-66/MIL-140A system. Microporous Mesoporous Mater. 2020, 296, 109998. https://doi.org/10.1016/j.micromeso.2020.109998

Chen, L.; Chen, W.; Wang, E. Graphene with cobalt oxide and tungsten carbide as a low-cost counter electrode catalyst applied in Pt-free dye-sensitized solar cells. J. Power Sources 2018, 380, 18–25. https://doi.org/10.1016/j.jpowsour.2017.11.057

Concina, I.; Vomiero, A. Metal oxide semiconductors for dye- and quantum-dot-sensitized solar cells. Small 2014, 11 (15), 1744–1774. https://doi.org/10.1002/smll.201402334

Coulter, J. B.; Birnie III, D. P. Assessing Tauc plot slope quantification: ZnO thin films as a model system. Phys. Status Solidi B 2017, 255 (3), 1700393. https://doi.org/10.1002/pssb.201700393

da Trindade, L. G.; Minervino, G. B.; Trench, A. B.; Carvalho, M. H.; Assis, M.; Li, M. S.; Oliveira, A. J. A.; Pereira, E. C.; Mazzo, T. M.; Longo, E. Influence of ionic liquid on the photoelectrochemical properties of ZnO particles. Ceram. Int. 2018, 44 (9), 10393–10401. https://doi.org/10.1016/j.ceramint.2018.03.053

da Trindade, L. G.; Borba, K. M. N.; Zanchet, L.; Lima, D. W.; Trench, A. B.; Rey, F.; Diaz, U.; Longo, E.; Bernardo-Gusmão, K.; Martini, E. M. A. SPEEK-based proton exchange membranes modified with MOF-encapsulated ionic liquid. Mater. Chem. Phys. 2019, 236, 121792. https://doi.org/10.1016/j.matchemphys.2019.121792

da Trindade, L. G.; Hata, G. Y.; Souza, J. C.; Soares, M. R. S.; Leite, E. R.; Pereira, E. C.; Longo, E.; Mazzo, T. M. Preparation and characterization of hematite nanoparticles-decorated zinc oxide particles (ZnO/Fe2O3) as photoelectrodes for solar cell applications. J. Mater. Sci. 2020a, 55, 2923–2936. https://doi.org/10.1007/s10853-019-04135-x

da Trindade, L. G.; Zanchet, L.; Dreon, R.; Souza, J. C.; Assis, M.; Longo, E.; Martini, E. M. A.; Chiquito, A. J.; Pontes, F. M. Microwave-assisted solvothermal preparation of Zr-BDC for modification of proton exchange membranes made of SPEEK/PBI blends. J. Mater. Sci. 2020b, 55, 14938–14952. https://doi.org/10.1007/s10853-020-05068-6

da Trindade, L. G.; Borba, K. M. N.; Trench, A. B.; Zanchet, L.; Teodoro, V.; Pontes, F. M. L.; Longo, E.; Mazzo, T. M. Effective strategy to coupling Zr-MOF/ZnO: Synthesis, morphology and photoelectrochemical properties evaluation. J. Solid State Chem. 2021, 293, 121794. https://doi.org/10.1016/j.jssc.2020.121794

Debataraja, A.; Zulhendri, D. W.; Yuliarto, B.; Nugraha; Hiskia; Sunendar, B. Investigation of nanostructured SnO2 synthesized with polyol technique for CO gas sensor applications. Procedia Eng. 2017, 170, 60–64. https://doi.org/10.1016/j.proeng.2017.03.011

Fu, Y.; Wu, J.; Du, R.; Guo, K.; Ma, R.; Zhang, F.; Zhu, W.; Fan, M. Temperature modulation of defects in NH2-UiO-66(Zr) for photocatalytic CO2 reduction. RSC Adv. 2019, 9, 37733-37738. https://doi.org/10.1039/C9RA08097J

Ganose, A. M.; Scanlon, D. O. Band gap and work function tailoring of SnO2 for improved transparent conducting ability in photovoltaics. J. Mater. Chem. C 2016, 4 (7), 1467-1475. https://doi.org/10.1039/C5TC04089B

Hendrickx, K.; Joos, J. J.; De Vos, A.; Poelman, D.; Smet, P. F.; Van Speybroeck, V.; Van Der Voort, P.; Lejaeghere, K. Exploring lanthanide doping in UiO-66: A combined experimental and computational study of the electronic structure. Inorg. Chem. 2018, 57 (9), 5463–5474. https://doi.org/10.1021/acs.inorgchem.8b00425

Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2017, 2, 16177. https://doi.org/10.1038/nenergy.2016.177

Kandasamy, M.; Seetharaman, A.; Sivasubramanian, D.; Nithya, A.; Jothivenkatachalam, K.; Maheswari, N.; Gopalan, M.; Dillibabu, S.; Eftekhari, A. Ni-doped SnO2 nanoparticles for sensing and photocatalysis. ACS Appl. Nano Mater. 2018, 10 (1), 5823–5836. https://doi.org/10.1021/acsanm.8b01473

Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan J.; Yang, G.; Yan. Y. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137 (21), 6730–6733. https://doi.org/10.1021/jacs.5b01994

Khannam, M.; Sharma, S.; Dolui, S.; Dolui, S. K. Graphene oxide incorporated TiO2 photoanode for high efficiency quasi solid state dye sensitized solar cells based on poly-vinyl alcohol gel electrolyte. RSC Adv. 2016, 6, 55406-55414. https://doi.org/10.1039/C6RA07577K

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131 (17), 6050–6051. https://doi.org/10.1021/ja809598r

Li, Y.; Xu, H.; Ouyang, S.; Ye, J. Metal–organic frameworks for photocatalysis. Phys. Chem. Chem. Phys. 2016, 18 (11), 7563–7572. https://doi.org/10.1039/C5CP05885F

Liu, H.; Ren, X.; Chen, L. Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solution. J. Ind. Eng. Chem. 2016, 34, 278–285. https://doi.org/10.1016/j.jiec.2015.11.02

Liu, X.; Zhao, X.; Zhou, M.; Cao, Y.; Wu, H.; Zhu, J. Highly stable and active palladium nanoparticles supported on a mesoporous UiO66@reduced graphene oxide complex for practical catalytic applications. Eur. J. Inorg. Chem. 2016, 2016 (20), 3338−3343. https://doi.org/10.1002/ejic.201600367

Luan, Y.; Qi, Y.; Gao, H.; Andriamitantsoa, R. S.; Zheng, N.; Wang, G. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. J. Mater. Chem. A 2015, 3 (33), 17320–17331. https://doi.org/10.1039/C5TA00816F

Mallesham, B.; Rangaswamy, A.; Rao, B.G.; Rao, T. V.; Reddy, B. M. Solvent-free production of glycerol carbonate from bioglycerol with urea over nanostructured promoted SnO2 catalysts. Catal. Lett. 2020, 150, 3626–3641. https://doi.org/10.1007/s10562-020-03241-9

Mathiazhagan, G.; Seeber, A.; Gengenbach, T.; Mastroianni, S.; Vak, D.; Chesman, A. S. R.; Gao, M.; Angmo, D.; Hinsch, A. Improving the stability of ambient processed, SnO2-based, perovskite solar cells by the UV-treatment of sub-cells. Sol. RRL 2020, 4 (9), 2000262. https://doi.org/10.1002/solr.202000262

Qian, J.; Liu, P.; Xiao, Y.; Jiang, Y.; Cao, Y.; Ai, X.; Yang, H. TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater. 2009, 21 (36), 3663–3667. https://doi.org/10.1002/adma.200900525

Selvaraj, P.; Baig, H.; Mallick, T. K.; Siviter, J.; Montecucco, A.; Li, W.; Paul, M.; Sweet, T.; Gao, M.; Knox, A. R.; Sundaram, S. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Sol. Energy Mater. Sol. Cells 2018, 175, 29–34. https://doi.org/10.1016/j.solmat.2017.10.006

Suresh, S.; Unni, G. E.; Satyanarayana, M.; Nair, A. S.; Pillai, V. P. M. Plasmonic Ag@Nb2O5 surface passivation layer on quantum confined SnO2 films for high current dye-sensitized solar cell applications. Electrochim. Acta 2018, 289, 1–12. https://doi.org/10.1016/j.electacta.2018.08.078

Waitschat, S.; Fröhlich, D.; Reinsch, H.; Terraschke, H.; Lomachenko, K. A.; Lamberti, C.; Kummer, H.; Helling, T.; Baumgartner, M.; Henninger, S.; Stock, N. Synthesis of MUiO-66 (M = Zr, Ce or Hf) Employing 2,5-Pyridinedicarboxylic Acid as a linker: Defect chemistry, framework hydrophilisation and sorption properties. Dalton. Trans. 2018, 47 (4), 1062–1070. https://doi.org/10.1039/C7DT03641H

Wang, A.; Zhou, Y.; Wang, Z.; Chen, M.; Sun, L.; Liu, X. Titanium incorporated with UiO-66(Zr)-type Metal–Organic Framework (MOF) for photocatalytic application. RSC Adv. 2016, 6 (5), 3671–3679. https://doi.org/10.1039/C5RA24135A

Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356 (6345), 1376–1379. https://doi.org/10.1126/science.aan2301

Yang, Q.; Zhang, H.-Y.; Wang, L.; Zhang, Y.; Zhao, J. Ru/UiO-66 catalyst for the reduction of nitroarenes and tandem reaction of alcohol oxidation/knoevenagel condensation. ACS Omega 2018, 3 (4), 4199−4212. https://doi.org/10.1021/acsomega.8b00157

Zango, Z. U.; Sambudi, N. S.; Jumbri, K.; Bakar, N. H. H. A.; Abdullah, N. A. F.; Negim, E.-S. M.; Saad, B. Experimental and molecular docking model studies for the adsorption of polycyclic aromatic hydrocarbons onto UiO-66(Zr) and NH2-UiO-66(Zr) metal-organic frameworks. Chem. Eng. Sci. 2020, 220, 115608. https://doi.org/10.1016/j.ces.2020.115608

Zhan, S.; Li, D.; Liang, S.; Chen, X.; Li, X. A novel flexible room temperature ethanol gas sensor based on SnO2 doped poly-diallyldimethylammonium chloride. Sensors 2013, 13 (4), 4378–4389. https://doi.org/10.3390/s130404378

Zhang, B.; Sun, L. Artificial photosynthesis: Opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 2019, 48 (7), 2216–2264. https://doi.org/10.1039/C8CS00897C

Zhang, Y.; Mao, F.; Wang, L.; Yuan, H.; Liu, P. F.; Yang, H. G. Recent advances in photocatalysis over metal–organic frameworks‐based materials. Sol. RRL 2020, 4 (5), 1900438. https://doi.org/10.1002/solr.201900438