Low-cost water-in-salt electrolytes for electrochemical energy storage applications: a short review

Main Article Content

Alan Massayuki Perdizio Sakita
Rodrigo Della Noce

Abstract

The utilization of aqueous electrolytes is an emerging field in batteries and supercapacitors to overcome the safety concerns about the flammability of the typical organic electrolytes employed in these devices. Yet, aqueous diluted electrolytes limit the electrochemical stability window (ESW) restricting the device cell voltage. Surprisingly, the use of water-in-salt electrolytes (WISEs) has demonstrated the capability of suppressing the free water content of solution leading to an ESW expansion. On the other hand, since the first report of WISEs, most of these electrolytes have employed expensive salts for their preparation, hindering the replacement of the current electrolytes, utilized in energy storage devices, by WISEs. On the other hand, in recent years, the employment of low-cost salts for WISEs has been investigated as a strategy to circumvent these economic issues revealing to be feasible for widening the cell voltage. Herein, we summarize the recent progress and developments of WISEs produced with low-cost salts providing the challenges and perspectives toward their application in electrochemical energy storage.

Metrics

Metrics Loading ...

Article Details

How to Cite
Sakita, A. M. P., & Noce, R. D. (2022). Low-cost water-in-salt electrolytes for electrochemical energy storage applications: a short review. Eclética Química, 47(2SI), 18–29. https://doi.org/10.26850/1678-4618eqj.v47.2SI.2022.p18-29
Section
Short review

Funding data

References

Adil, M.; Ghosh, A.; Mitra, S. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. ACS Appl. Mater. Interfaces. 2022, 14 (22), 25501–25515. https://doi.org/10.1021/acsami.2c04742

An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon N Y 2016, 105, 52–76. https://doi.org/10.1016/j.carbon.2016.04.008

Bergstroem, P. A.; Lindgren, J.; Kristiansson, O. An IR study of the hydration of ClO4-, NO3-, I-, Br-, Cl-, and SO42- anions in aqueous solution. J. Phys. Chem. 1991, 95 (22), 8575–8580. https://doi.org/10.1021/j100175a031

Bu, X.; Su, L.; Dou, Q.; Lei, S.; Yan, X. A Low-Cost “Water-in-Salt” Electrolyte for a 2.3 V High-Rate Carbon-Based Supercapacitor. J. Mat. Chem. A 2019a, 7 (13), 7541–7547. https://doi.org/10.1039/C9TA00154A

Bu, X.; Zhang, Y.; Su, L.; Dou, Q.; Xue, Y.; Lu, X. A 2.4-V Asymmetric Supercapacitor Based on Cation-Intercalated Manganese Oxide Nanosheets in a Low-Cost “Water-in-Salt” Electrolyte. Ionics. 2019b, 25 (12), 6007–6015. https://doi.org/10.1007/s11581-019-03141-y

Chava, B. S.; Wang, Y.; Sivasankar, V. S.; Das, S. Water-Free Localization of Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube. Cell Rep. Physical Science. 2020, 1 (11), 100246. https://doi.org/10.1016/j.xcrp.2020.100246

Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Effect of cation size on alkali acetate-based ‘water-in-bisalt’ electrolyte and its application in aqueous rechargeable lithium battery. Applied Materials Today 2020a, 20, 100728. https://doi.org/10.1016/j.apmt.2020.100728

Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Salt-Concentrated Acetate Electrolytes for a High Voltage Aqueous Zn/MnO2 Battery. Energy Storage Mater. 2020b, 28, 205–215. https://doi.org/10.1016/j.ensm.2020.03.011

Chen, S.; Sun, P.; Sun, B.; Humphreys, J.; Zou, P.; Xie, K.; Tao, S. Nitrate-based ‘oversaturated gel electrolyte’ for high-voltage and high-stability aqueous lithium batteries. Energy Storage Mater. 2021, 37, 598–608. https://doi.org/10.1016/j.ensm.2021.02.038

Deng, Y.; Wang, H.; Zhang, K.; Shao, J.; Qiu, J.; Wu, J.; Wu, Y.; Yan, L. A High-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte. Nanoscale. 2021, 13 (5), 3010–3018. https://doi.org/10.1039/D0NR08437A

Ding, M. S.; Xu, K. Phase Diagram, Conductivity, and Glass Transition of LiTFSI-H2O Binary Electrolytes. J. Phys. Chem. C. 2018, 122 (29), 16624–16629. https://doi.org/10.1021/acs.jpcc.8b05193

Dou, Q.; Lei, S.; Wang, D.-W.; Zhang, Q.; Xiao, D.; Guo, H.; Wang, A.; Yang, H.; Li, Y.; Shi, S.; Yan, X. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 2018, 11 (11), 3212–3219. https://doi.org/10.1039/C8EE01040D

Dou, Q.; Lu, Y.; Su, L.; Zhang, X.; Lei, S.; Bu, X.; Liu, L.; Xiao, D.; Chen, J.; Shi, S.; Yan, X. A Sodium Perchlorate-Based Hybrid Electrolyte with High Salt-to-Water Molar Ratio for Safe 2.5 V Carbon-Based Supercapacitor. Energy Storage Mater. 2019. https://doi.org/10.1016/j.ensm.2019.03.016

Droguet, L.; Grimaud, A.; Fontaine, O.; Tarascon, J.-M. Water-in-Salt Electrolyte (WiSE) for Aqueous Batteries: A Long Way to Practicality. Adv. Energy Mater. 2020, 10 (43), 2002440. https://doi.org/10.1002/aenm.202002440

Eftekhari, A. Energy Efficiency: A Critically Important but Neglected Factor in Battery Research. Sustainable Energy Fuels. 2017, 1 (10), 2053–2060. https://doi.org/10.1039/C7SE00350A

Fan, L.-Q.; Geng, C.-L.; Wang, Y.-L.; Sun, S.-J.; Huang, Y.-F.; Wu, J.-H. Design of a redox-active “water-in-salt” hydrogel polymer electrolyte for superior-performance quasi-solid-state supercapacitors. New J. Chem. 2020, 44 (39), 17070–17078. https://doi.org/10.1039/D0NJ04102E

Fernández-Ropero, A. J.; Zarrabeitia, M.; Reynaud, M.; Rojo, T.; Casas-Cabanas, M. Toward Safe and Sustainable Batteries: Na4Fe3(PO4)2P2O7 as a Low-Cost Cathode for Rechargeable Aqueous Na-Ion Batteries. J. Phys. Chem. C. 2018, 122 (1), 133–142. https://doi.org/10.1021/acs.jpcc.7b09803

Gambou-Bosca, A.; Bélanger, D. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. J. Power Sources. 2016, 326, 595–603. https://doi.org/10.1016/j.jpowsour.2016.04.088

Guo, J.; Ma, Y.; Zhao, K.; Wang, Y.; Yang, B.; Cui, J.; Yan, X. High-Performance and Ultra-Stable Aqueous Supercapacitors Based on a Green and Low-Cost Water-In-Salt Electrolyte. ChemElectroChem. 2019, 6 (21), 5433–5438. https://doi.org/10.1002/celc.201901591

Han, J.; Zhang, H.; Varzi, A.; Passerini, S. Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries. ChemSusChem. 2018, 11 (21), 3704–3707. https://doi.org/10.1002/cssc.201801930

Han, S. Dynamic features of water molecules in superconcentrated aqueous electrolytes. Scic. Rep. 2018, 8 (1), 9347. https://doi.org/10.1038/s41598-018-27706-5

Han, J.; Mariani, A.; Zhang, H.; Zarrabeitia, M.; Gao, X.; Carvalho, D. V.; Varzi, A.; Passerini, S. Gelified Acetate-Based Water-in-Salt Electrolyte Stabilizing Hexacyanoferrate Cathode for Aqueous Potassium-Ion Batteries. Energy Storage Mater. 2020a, 30, 196–205. https://doi.org/10.1016/j.ensm.2020.04.028

Han, J.; Zarrabeitia, M.; Mariani, A.; Jusys, Z.; Hekmatfar, M.; Zhang, H.; Geiger, D.; Kaiser, U.; Behm, R. J.; Varzi, A.; Passerini, S. Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries. Nano Energy. 2020b, 77, 105176. https://doi.org/10.1016/j.nanoen.2020.105176

Im, E.; Ryu, J. H.; Baek, K.; Moon, G. D.; Kang, S. J. “Water-in-Salt” and NASICON Electrolyte-Based Na–CO2 Battery. Energy Storage Mater. 2021, 37, 424–432. https://doi.org/10.1016/j.ensm.2021.02.031

Jenkins, H. D. B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95 (8), 2695–2724. https://doi.org/10.1021/cr00040a004

Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21–25. https://doi.org/10.1016/j.elecom.2015.07.022

Lee, W. S. V.; Xiong, T.; Loh, G. C.; Tan, T. L.; Xue, J. Optimizing Electrolyte Physiochemical Properties toward 2.8 v Aqueous Supercapacitor. ACS Appl. Energy Mater. 2018, 1 (7), 3070–3076. https://doi.org/10.1021/acsaem.8b00751

Lee, M. H.; Kim, S. J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K. Y.; Seong, W. M.; Park, H.; Kwon, G.; Lee, B.; Kang, K. Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today. 2019, 29, 26–36. https://doi.org/10.1016/j.mattod.2019.02.004

Leonard, D. P.; Wei, Z.; Chen, G.; Du, F.; Ji, X. Water-in-Salt Electrolyte for Potassium-Ion Batteries. ACS Energy Lett. 2018, 3 (2), 373–374. https://doi.org/10.1021/acsenergylett.8b00009

Lim, J.; Park, K.; Lee, H.; Kim, J.; Kwak, K.; Cho, M. Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte. J. Am. Chem. Soc. 2018, 140 (46), 15661–15667. https://doi.org/10.1021/jacs.8b07696

Liu, S.; Ye, S. H.; Li, C. Z.; Pan, G. L.; Gao, X. P. Rechargeable Aqueous Lithium-Ion Battery of TiO2∕LiMn2O4 with a High Voltage. J. Electrochem. Soc. 2011, 158 (12), A1490. https://doi.org/10.1149/2.094112jes

Liu, T.; Tang, L.; Luo, H.; Cheng, S.; Liu, M. A Promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Chem. Commun. 2019, 55 (85), 12817–12820. https://doi.org/10.1039/C9CC05927J

Liu, S.; Klukas, R.; Porada, T.; Furda, K.; Fernández, A. M.; Balducci, A. Potassium formate-based electrolytes for high performance aqueous electrochemical capacitors. J. Power Sources. 2022, 541, 231657. https://doi.org/10.1016/j.jpowsour.2022.231657

Lukatskaya, M. R.; Feldblyum, J. I.; Mackanic, D. G.; Lissel, F.; Michels, D. L.; Cui, Y.; Bao, Z. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 2018, 11 (10), 2876–2883. https://doi.org/10.1039/C8EE00833G

Luo, Z.-X.; Xing, Y.-Z.; Ling, Y.-C.; Kleinhammes, A.; Wu, Y. Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR. Nat. Commun. 2015, 6, 6358. https://doi.org/10.1038/ncomms7358

Ma, L.; Chen, S.; Li, N.; Liu, Z.; Tang, Z.; Zapien, J. A.; Chen, S.; Fan, J.; Zhi, C. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv. Mat. 2020, 32 (14), 1908121. https://doi.org/10.1002/adma.201908121

Meng, C.; Zhou, F.; Liu, H.; Zhu, Y.; Fu, Q.; Wu, Z.-S. Water-in-Salt Ambipolar Redox Electrolyte Extraordinarily Boosting High Pseudocapacitive Performance of Micro-Supercapacitors. ACS Energy Lett. 2022, 7 (5), 1706–1711. https://doi.org/10.1021/acsenergylett.2c00329

Pan, W.; Wang, Y.; Zhang, Y.; Kwok, H. Y. H.; Wu, M.; Zhao, X.; Leung, D. Y. C. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A. 2019, 7 (29), 17420–17425. https://doi.org/10.1039/C9TA05207K

Pang, M.; Jiang, S.; Zhao, J.; Zhang, S.; Wang, R.; Li, N.; Liu, R.; Pan, Q.; Qu, W.; Xing, B. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with carbon electrodes derived from biomass waste-ground grain hulls. RSC Adv. 2020, 10 (58), 35545–35556. https://doi.org/10.1039/D0RA07448A

Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries. J. Electrochem. Soc. 2011, 158 (10), A1067. https://doi.org/10.1149/1.3611434

Park, J.; Lee, J.; Kim, W. Redox-Active Water-in-Salt Electrolyte for High-Energy-Density Supercapacitors. ACS Energy Lett. 2022, 7 (4), 1266–1273. https://doi.org/10.1021/acsenergylett.2c00015

Reber, D.; Grissa, R.; Becker, M.; Kühnel, R. S.; Battaglia, C. Anion Selection Criteria for Water-in-Salt Electrolytes. Adv. Energy. Mater. 2021, 11 (5), 2002913. https://doi.org/10.1002/aenm.202002913

Rossetto, H. L.; Souza, M. F.; Pandolfelli, V. C. Chaotropic substances and their effects on the mechanical strength of Portland cement-based materials. Mat. Res. 2008, 11 (2), 183–185. https://doi.org/10.1590/S1516-14392008000200012

Salis, A.; Ninham, B. W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43 (21), 7358–7377. https://doi.org/10.1039/C4CS00144C

Sennu, P.; Chua, R.; Dintakurti, S. S. H.; Hanna, J. V.; Ramabhadran, R. O.; Aravindan, V.; Madhavi, S. Supersaturated “water-in-salt” hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. J. Power Sources. 2020, 472, 228558. https://doi.org/10.1016/j.jpowsour.2020.228558

Serva, A.; Dubouis, N.; Grimaud, A.; Salanne, M. Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces. Acc. Chem. Res.2021, 54 (4), 1034–1042. https://doi.org/10.1021/acs.accounts.0c00795

Shi, M.; Yang, W.; Zhang, Z.; Zhao, M.; Wang, Z. L.; Lu, X. Hydrogels with highly concentrated salt solution as electrolytes for solid-state supercapacitors with a suppressed self-discharge rate. J. Mater. Chem. A. 2022, 10 (6), 2966–2972. https://doi.org/10.1039/D1TA08709F

Smith, L.; Dunn, B. Opening the Window for aqueous electrolytes. Science. 2015, 350 (6263), 918–918. https://doi.org/10.1126/science.aad5575

Stigliano, P. L.; Pianta, N.; Bonizzoni, S.; Mauri, M.; Simonutti, R.; Lorenzi, R.; Vigani, B.; Berbenni, V.; Rossi, S.; Mustarelli, P.; Ruffo, R. A physico-chemical investigation of highly concentrated potassium acetate solutions towards applications in electrochemistry. Phys. Chem. Chem. Phys. 2021, 23 (2), 1139–1145. https://doi.org/10.1039/D0CP04151C

Sun, L.; Yao, Y.; Dai, L.; Jiao, M.; Ding, B.; Yu, Q.; Tang, J.; Liu, B. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 2022, 47, 187–194. https://doi.org/10.1016/j.ensm.2022.02.012

Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015, 350 (6263), 938–943. https://doi.org/10.1126/science.aab1595

Suo, L.; Borodin, O.; Sun, W.; Fan, X.; Yang, C.; Wang, F.; Gao, T.; Ma, Z.; Schroeder, M.; von Cresce, A.; Russell, S. M.; Armand, M.; Angell, A.; Xu, K.; Wang, C. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte. Angew. Chem. 2016, 128 (25), 7252–7257. https://doi.org/10.1002/ange.201602397

Thareja, S.; Kumar, A. “water-In-Salt” Electrolyte-Based High-Voltage (2.7 V) Sustainable Symmetric Supercapacitor with Superb Electrochemical Performance - An Analysis of the Role of Electrolytic Ions in Extending the Cell Voltage. ACS Sustainable Chem. Eng. 2021, 9 (5), 2338–2347. https://doi.org/10.1021/acssuschemeng.0c08604

Tian, Z.; Deng, W.; Wang, X.; Liu, C.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors. Funct. Mater. Lett. 2017, 10 (6), 1750081. https://doi.org/10.1142/S1793604717500813

Turgeman, M.; Wineman-Fisher, V.; Malchik, F.; Saha, A.; Bergman, G.; Gavriel, B.; Penki, T. R.; Nimkar, A.; Baranauskaite, V.; Aviv, H.; Levi, M. D.; Noked, M.; Major, D. T.; Shpigel, N.; Aurbach, D. A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery. Cell Rep. Physical Science. 2022, 3 (1), 100688. https://doi.org/10.1016/j.xcrp.2021.100688

Wang, X.; Bak, S. M.; Han, M.; Shuck, C. E.; McHugh, C.; Li, K.; Li, J.; Tang, J.; Gogotsi, Y. Surface Redox Pseudocapacitance of Partially Oxidized Titanium Carbide MXene in Water-in-Salt Electrolyte. ACS Energy Lett. 2022, 7 (1), 30–35. https://doi.org/10.1021/acsenergylett.1c02262

Wu, X.; Xu, Y.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte. J. Am. Chem. Soc. 2019, 141 (15), 6338–6344. https://doi.org/10.1021/jacs.9b00617

Xu, J.; Ji, X.; Zhang, J.; Yang, C.; Wang, P.; Liu, S.; Ludwig, K.; Chen, F.; Kofinas, P.; Wang, C. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Energy. 2022, 7 (2), 186–193. https://doi.org/10.1038/s41560-021-00977-5

Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A.; Eidson, N.; Wang, C.; Xu, K. 4.0 V Aqueous Li-Ion batteries. Joule. 2017, 1 (1), 122–132. https://doi.org/10.1016/j.joule.2017.08.009

Yang, B.; Qin, T.; Du, Y.; Zhang, Y.; Wang, J.; Chen, T.; Ge, M.; Bin, D.; Ge, C.; Lu, H. Rocking-chair proton battery based on a low-cost “water in salt” electrolyte. Chem. Commun. 2022, 58 (10), 1550–1553. https://doi.org/10.1039/D1CC06325A

Yassine, M.; Fabris, D. Performance of commercially available supercapacitors. Energies. 2017, 10 (9), 1340. https://doi.org/10.3390/en10091340

Zafar, Z. A.; Abbas, G.; Silhavik, M.; Knizek, K.; Kaman, O.; Sonia, F. J.; Kumar, P.; Jiricek, P.; Houdková, J.; Frank, O.; Cervenka, J. Reversible anion intercalation into graphite from aluminum perchlorate “water‐in‐salt” electrolyte. Electrochim. Acta. 2022a, 404, 139754. https://doi.org/10.1016/j.electacta.2021.139754

Zafar, Z. A.; Abbas, G.; Knizek, K.; Silhavik, M.; Kumar, P.; Jiricek, P.; Houdková, J.; Frank, O.; Cervenka, J. Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage zn-graphite dual-ion battery. J. Mater. Chem. A. 2022b, 10 (4), 2064–2074. https://doi.org/10.1039/D1TA10122F

Zhang, L.; Rodríguez-Pérez, I. A.; Jiang, H.; Zhang, C.; Leonard, D. P.; Guo, Q.; Wang, W.; Han, S.; Wang, L.; Ji, X. ZnCl2 “Water-in-Salt” electrolyte transforms the performance of vanadium oxide as a zn battery cathode. Adv. Funct. Mater. 2019, 29 (30), 1902653. https://doi.org/10.1002/adfm.201902653

Zhang, Y.; Xu, J.; Li, Z.; Wang, Y.; Wang, S.; Dong, X.; Wang, Y. All-climate aqueous Na-Ion batteries using “water-in-salt” electrolyte. Sci. Bull. 2022, 67 (2), 161–170. https://doi.org/10.1016/j.scib.2021.08.010

Zheng, W.; Halim, J.; Rosen, J.; Barsoum, M. W. Aqueous electrolytes, MXene‐Based supercapacitors and their self‐discharge. Adv. Sustain. Syst. 2022, 3 (2), 2100147. https://doi.org/10.1002/aesr.202100147

Zhu, J.; Xu, Y.; Fu, Y.; Xiao, D.; Li, Y.; Liu, L.; Wang, Y.; Zhang, Q.; Li, J.; Yan, X. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small. 2020, 16 (17), 1905838. https://doi.org/10.1002/smll.201905838

Zhu, Y.; Zheng, S.; Lu, P.; Ma, J.; Das, P.; Su, F.; Cheng, H.-M.; Wu, Z.-S. Kinetic regulation of mxene with water-in-licl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Ver. 2022, nwac024. https://doi.org/10.1093/nsr/nwac024