Low-cost water-in-salt electrolytes for electrochemical energy storage applications: a short review
Main Article Content
Abstract
The utilization of aqueous electrolytes is an emerging field in batteries and supercapacitors to overcome the safety concerns about the flammability of the typical organic electrolytes employed in these devices. Yet, aqueous diluted electrolytes limit the electrochemical stability window (ESW) restricting the device cell voltage. Surprisingly, the use of water-in-salt electrolytes (WISEs) has demonstrated the capability of suppressing the free water content of solution leading to an ESW expansion. On the other hand, since the first report of WISEs, most of these electrolytes have employed expensive salts for their preparation, hindering the replacement of the current electrolytes, utilized in energy storage devices, by WISEs. On the other hand, in recent years, the employment of low-cost salts for WISEs has been investigated as a strategy to circumvent these economic issues revealing to be feasible for widening the cell voltage. Herein, we summarize the recent progress and developments of WISEs produced with low-cost salts providing the challenges and perspectives toward their application in electrochemical energy storage.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 21/14163-5
References
Adil, M.; Ghosh, A.; Mitra, S. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. ACS Appl. Mater. Interfaces. 2022, 14 (22), 25501–25515. https://doi.org/10.1021/acsami.2c04742
An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon N Y 2016, 105, 52–76. https://doi.org/10.1016/j.carbon.2016.04.008
Bergstroem, P. A.; Lindgren, J.; Kristiansson, O. An IR study of the hydration of ClO4-, NO3-, I-, Br-, Cl-, and SO42- anions in aqueous solution. J. Phys. Chem. 1991, 95 (22), 8575–8580. https://doi.org/10.1021/j100175a031
Bu, X.; Su, L.; Dou, Q.; Lei, S.; Yan, X. A Low-Cost “Water-in-Salt” Electrolyte for a 2.3 V High-Rate Carbon-Based Supercapacitor. J. Mat. Chem. A 2019a, 7 (13), 7541–7547. https://doi.org/10.1039/C9TA00154A
Bu, X.; Zhang, Y.; Su, L.; Dou, Q.; Xue, Y.; Lu, X. A 2.4-V Asymmetric Supercapacitor Based on Cation-Intercalated Manganese Oxide Nanosheets in a Low-Cost “Water-in-Salt” Electrolyte. Ionics. 2019b, 25 (12), 6007–6015. https://doi.org/10.1007/s11581-019-03141-y
Chava, B. S.; Wang, Y.; Sivasankar, V. S.; Das, S. Water-Free Localization of Anion at Anode for Small-Concentration Water-in-Salt Electrolytes Confined in Boron-Nitride Nanotube. Cell Rep. Physical Science. 2020, 1 (11), 100246. https://doi.org/10.1016/j.xcrp.2020.100246
Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Effect of cation size on alkali acetate-based ‘water-in-bisalt’ electrolyte and its application in aqueous rechargeable lithium battery. Applied Materials Today 2020a, 20, 100728. https://doi.org/10.1016/j.apmt.2020.100728
Chen, S.; Lan, R.; Humphreys, J.; Tao, S. Salt-Concentrated Acetate Electrolytes for a High Voltage Aqueous Zn/MnO2 Battery. Energy Storage Mater. 2020b, 28, 205–215. https://doi.org/10.1016/j.ensm.2020.03.011
Chen, S.; Sun, P.; Sun, B.; Humphreys, J.; Zou, P.; Xie, K.; Tao, S. Nitrate-based ‘oversaturated gel electrolyte’ for high-voltage and high-stability aqueous lithium batteries. Energy Storage Mater. 2021, 37, 598–608. https://doi.org/10.1016/j.ensm.2021.02.038
Deng, Y.; Wang, H.; Zhang, K.; Shao, J.; Qiu, J.; Wu, J.; Wu, Y.; Yan, L. A High-voltage quasi-solid-state flexible supercapacitor with a wide operational temperature range based on a low-cost “water-in-salt” hydrogel electrolyte. Nanoscale. 2021, 13 (5), 3010–3018. https://doi.org/10.1039/D0NR08437A
Ding, M. S.; Xu, K. Phase Diagram, Conductivity, and Glass Transition of LiTFSI-H2O Binary Electrolytes. J. Phys. Chem. C. 2018, 122 (29), 16624–16629. https://doi.org/10.1021/acs.jpcc.8b05193
Dou, Q.; Lei, S.; Wang, D.-W.; Zhang, Q.; Xiao, D.; Guo, H.; Wang, A.; Yang, H.; Li, Y.; Shi, S.; Yan, X. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ. Sci. 2018, 11 (11), 3212–3219. https://doi.org/10.1039/C8EE01040D
Dou, Q.; Lu, Y.; Su, L.; Zhang, X.; Lei, S.; Bu, X.; Liu, L.; Xiao, D.; Chen, J.; Shi, S.; Yan, X. A Sodium Perchlorate-Based Hybrid Electrolyte with High Salt-to-Water Molar Ratio for Safe 2.5 V Carbon-Based Supercapacitor. Energy Storage Mater. 2019. https://doi.org/10.1016/j.ensm.2019.03.016
Droguet, L.; Grimaud, A.; Fontaine, O.; Tarascon, J.-M. Water-in-Salt Electrolyte (WiSE) for Aqueous Batteries: A Long Way to Practicality. Adv. Energy Mater. 2020, 10 (43), 2002440. https://doi.org/10.1002/aenm.202002440
Eftekhari, A. Energy Efficiency: A Critically Important but Neglected Factor in Battery Research. Sustainable Energy Fuels. 2017, 1 (10), 2053–2060. https://doi.org/10.1039/C7SE00350A
Fan, L.-Q.; Geng, C.-L.; Wang, Y.-L.; Sun, S.-J.; Huang, Y.-F.; Wu, J.-H. Design of a redox-active “water-in-salt” hydrogel polymer electrolyte for superior-performance quasi-solid-state supercapacitors. New J. Chem. 2020, 44 (39), 17070–17078. https://doi.org/10.1039/D0NJ04102E
Fernández-Ropero, A. J.; Zarrabeitia, M.; Reynaud, M.; Rojo, T.; Casas-Cabanas, M. Toward Safe and Sustainable Batteries: Na4Fe3(PO4)2P2O7 as a Low-Cost Cathode for Rechargeable Aqueous Na-Ion Batteries. J. Phys. Chem. C. 2018, 122 (1), 133–142. https://doi.org/10.1021/acs.jpcc.7b09803
Gambou-Bosca, A.; Bélanger, D. Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors. J. Power Sources. 2016, 326, 595–603. https://doi.org/10.1016/j.jpowsour.2016.04.088
Guo, J.; Ma, Y.; Zhao, K.; Wang, Y.; Yang, B.; Cui, J.; Yan, X. High-Performance and Ultra-Stable Aqueous Supercapacitors Based on a Green and Low-Cost Water-In-Salt Electrolyte. ChemElectroChem. 2019, 6 (21), 5433–5438. https://doi.org/10.1002/celc.201901591
Han, J.; Zhang, H.; Varzi, A.; Passerini, S. Fluorine-Free Water-in-Salt Electrolyte for Green and Low-Cost Aqueous Sodium-Ion Batteries. ChemSusChem. 2018, 11 (21), 3704–3707. https://doi.org/10.1002/cssc.201801930
Han, S. Dynamic features of water molecules in superconcentrated aqueous electrolytes. Scic. Rep. 2018, 8 (1), 9347. https://doi.org/10.1038/s41598-018-27706-5
Han, J.; Mariani, A.; Zhang, H.; Zarrabeitia, M.; Gao, X.; Carvalho, D. V.; Varzi, A.; Passerini, S. Gelified Acetate-Based Water-in-Salt Electrolyte Stabilizing Hexacyanoferrate Cathode for Aqueous Potassium-Ion Batteries. Energy Storage Mater. 2020a, 30, 196–205. https://doi.org/10.1016/j.ensm.2020.04.028
Han, J.; Zarrabeitia, M.; Mariani, A.; Jusys, Z.; Hekmatfar, M.; Zhang, H.; Geiger, D.; Kaiser, U.; Behm, R. J.; Varzi, A.; Passerini, S. Halide-free water-in-salt electrolytes for stable aqueous sodium-ion batteries. Nano Energy. 2020b, 77, 105176. https://doi.org/10.1016/j.nanoen.2020.105176
Im, E.; Ryu, J. H.; Baek, K.; Moon, G. D.; Kang, S. J. “Water-in-Salt” and NASICON Electrolyte-Based Na–CO2 Battery. Energy Storage Mater. 2021, 37, 424–432. https://doi.org/10.1016/j.ensm.2021.02.031
Jenkins, H. D. B.; Marcus, Y. Viscosity B-Coefficients of Ions in Solution. Chem. Rev. 1995, 95 (8), 2695–2724. https://doi.org/10.1021/cr00040a004
Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21–25. https://doi.org/10.1016/j.elecom.2015.07.022
Lee, W. S. V.; Xiong, T.; Loh, G. C.; Tan, T. L.; Xue, J. Optimizing Electrolyte Physiochemical Properties toward 2.8 v Aqueous Supercapacitor. ACS Appl. Energy Mater. 2018, 1 (7), 3070–3076. https://doi.org/10.1021/acsaem.8b00751
Lee, M. H.; Kim, S. J.; Chang, D.; Kim, J.; Moon, S.; Oh, K.; Park, K. Y.; Seong, W. M.; Park, H.; Kwon, G.; Lee, B.; Kang, K. Toward a low-cost high-voltage sodium aqueous rechargeable battery. Mater. Today. 2019, 29, 26–36. https://doi.org/10.1016/j.mattod.2019.02.004
Leonard, D. P.; Wei, Z.; Chen, G.; Du, F.; Ji, X. Water-in-Salt Electrolyte for Potassium-Ion Batteries. ACS Energy Lett. 2018, 3 (2), 373–374. https://doi.org/10.1021/acsenergylett.8b00009
Lim, J.; Park, K.; Lee, H.; Kim, J.; Kwak, K.; Cho, M. Nanometric Water Channels in Water-in-Salt Lithium Ion Battery Electrolyte. J. Am. Chem. Soc. 2018, 140 (46), 15661–15667. https://doi.org/10.1021/jacs.8b07696
Liu, S.; Ye, S. H.; Li, C. Z.; Pan, G. L.; Gao, X. P. Rechargeable Aqueous Lithium-Ion Battery of TiO2∕LiMn2O4 with a High Voltage. J. Electrochem. Soc. 2011, 158 (12), A1490. https://doi.org/10.1149/2.094112jes
Liu, T.; Tang, L.; Luo, H.; Cheng, S.; Liu, M. A Promising water-in-salt electrolyte for aqueous based electrochemical energy storage cells with a wide potential window: highly concentrated HCOOK. Chem. Commun. 2019, 55 (85), 12817–12820. https://doi.org/10.1039/C9CC05927J
Liu, S.; Klukas, R.; Porada, T.; Furda, K.; Fernández, A. M.; Balducci, A. Potassium formate-based electrolytes for high performance aqueous electrochemical capacitors. J. Power Sources. 2022, 541, 231657. https://doi.org/10.1016/j.jpowsour.2022.231657
Lukatskaya, M. R.; Feldblyum, J. I.; Mackanic, D. G.; Lissel, F.; Michels, D. L.; Cui, Y.; Bao, Z. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy Environ. Sci. 2018, 11 (10), 2876–2883. https://doi.org/10.1039/C8EE00833G
Luo, Z.-X.; Xing, Y.-Z.; Ling, Y.-C.; Kleinhammes, A.; Wu, Y. Electroneutrality Breakdown and Specific Ion Effects in Nanoconfined Aqueous Electrolytes Observed by NMR. Nat. Commun. 2015, 6, 6358. https://doi.org/10.1038/ncomms7358
Ma, L.; Chen, S.; Li, N.; Liu, Z.; Tang, Z.; Zapien, J. A.; Chen, S.; Fan, J.; Zhi, C. Hydrogen-Free and Dendrite-Free All-Solid-State Zn-Ion Batteries. Adv. Mat. 2020, 32 (14), 1908121. https://doi.org/10.1002/adma.201908121
Meng, C.; Zhou, F.; Liu, H.; Zhu, Y.; Fu, Q.; Wu, Z.-S. Water-in-Salt Ambipolar Redox Electrolyte Extraordinarily Boosting High Pseudocapacitive Performance of Micro-Supercapacitors. ACS Energy Lett. 2022, 7 (5), 1706–1711. https://doi.org/10.1021/acsenergylett.2c00329
Pan, W.; Wang, Y.; Zhang, Y.; Kwok, H. Y. H.; Wu, M.; Zhao, X.; Leung, D. Y. C. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J. Mater. Chem. A. 2019, 7 (29), 17420–17425. https://doi.org/10.1039/C9TA05207K
Pang, M.; Jiang, S.; Zhao, J.; Zhang, S.; Wang, R.; Li, N.; Liu, R.; Pan, Q.; Qu, W.; Xing, B. “Water-in-salt” electrolyte enhanced high voltage aqueous supercapacitor with carbon electrodes derived from biomass waste-ground grain hulls. RSC Adv. 2020, 10 (58), 35545–35556. https://doi.org/10.1039/D0RA07448A
Park, S. I.; Gocheva, I.; Okada, S.; Yamaki, J. Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries. J. Electrochem. Soc. 2011, 158 (10), A1067. https://doi.org/10.1149/1.3611434
Park, J.; Lee, J.; Kim, W. Redox-Active Water-in-Salt Electrolyte for High-Energy-Density Supercapacitors. ACS Energy Lett. 2022, 7 (4), 1266–1273. https://doi.org/10.1021/acsenergylett.2c00015
Reber, D.; Grissa, R.; Becker, M.; Kühnel, R. S.; Battaglia, C. Anion Selection Criteria for Water-in-Salt Electrolytes. Adv. Energy. Mater. 2021, 11 (5), 2002913. https://doi.org/10.1002/aenm.202002913
Rossetto, H. L.; Souza, M. F.; Pandolfelli, V. C. Chaotropic substances and their effects on the mechanical strength of Portland cement-based materials. Mat. Res. 2008, 11 (2), 183–185. https://doi.org/10.1590/S1516-14392008000200012
Salis, A.; Ninham, B. W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43 (21), 7358–7377. https://doi.org/10.1039/C4CS00144C
Sennu, P.; Chua, R.; Dintakurti, S. S. H.; Hanna, J. V.; Ramabhadran, R. O.; Aravindan, V.; Madhavi, S. Supersaturated “water-in-salt” hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. J. Power Sources. 2020, 472, 228558. https://doi.org/10.1016/j.jpowsour.2020.228558
Serva, A.; Dubouis, N.; Grimaud, A.; Salanne, M. Confining Water in Ionic and Organic Solvents to Tune Its Adsorption and Reactivity at Electrified Interfaces. Acc. Chem. Res.2021, 54 (4), 1034–1042. https://doi.org/10.1021/acs.accounts.0c00795
Shi, M.; Yang, W.; Zhang, Z.; Zhao, M.; Wang, Z. L.; Lu, X. Hydrogels with highly concentrated salt solution as electrolytes for solid-state supercapacitors with a suppressed self-discharge rate. J. Mater. Chem. A. 2022, 10 (6), 2966–2972. https://doi.org/10.1039/D1TA08709F
Smith, L.; Dunn, B. Opening the Window for aqueous electrolytes. Science. 2015, 350 (6263), 918–918. https://doi.org/10.1126/science.aad5575
Stigliano, P. L.; Pianta, N.; Bonizzoni, S.; Mauri, M.; Simonutti, R.; Lorenzi, R.; Vigani, B.; Berbenni, V.; Rossi, S.; Mustarelli, P.; Ruffo, R. A physico-chemical investigation of highly concentrated potassium acetate solutions towards applications in electrochemistry. Phys. Chem. Chem. Phys. 2021, 23 (2), 1139–1145. https://doi.org/10.1039/D0CP04151C
Sun, L.; Yao, Y.; Dai, L.; Jiao, M.; Ding, B.; Yu, Q.; Tang, J.; Liu, B. Sustainable and high-performance Zn dual-ion batteries with a hydrogel-based water-in-salt electrolyte. Energy Storage Mater. 2022, 47, 187–194. https://doi.org/10.1016/j.ensm.2022.02.012
Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015, 350 (6263), 938–943. https://doi.org/10.1126/science.aab1595
Suo, L.; Borodin, O.; Sun, W.; Fan, X.; Yang, C.; Wang, F.; Gao, T.; Ma, Z.; Schroeder, M.; von Cresce, A.; Russell, S. M.; Armand, M.; Angell, A.; Xu, K.; Wang, C. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by “Water-in-Bisalt” Electrolyte. Angew. Chem. 2016, 128 (25), 7252–7257. https://doi.org/10.1002/ange.201602397
Thareja, S.; Kumar, A. “water-In-Salt” Electrolyte-Based High-Voltage (2.7 V) Sustainable Symmetric Supercapacitor with Superb Electrochemical Performance - An Analysis of the Role of Electrolytic Ions in Extending the Cell Voltage. ACS Sustainable Chem. Eng. 2021, 9 (5), 2338–2347. https://doi.org/10.1021/acssuschemeng.0c08604
Tian, Z.; Deng, W.; Wang, X.; Liu, C.; Li, C.; Chen, J.; Xue, M.; Li, R.; Pan, F. Superconcentrated aqueous electrolyte to enhance energy density for advanced supercapacitors. Funct. Mater. Lett. 2017, 10 (6), 1750081. https://doi.org/10.1142/S1793604717500813
Turgeman, M.; Wineman-Fisher, V.; Malchik, F.; Saha, A.; Bergman, G.; Gavriel, B.; Penki, T. R.; Nimkar, A.; Baranauskaite, V.; Aviv, H.; Levi, M. D.; Noked, M.; Major, D. T.; Shpigel, N.; Aurbach, D. A cost-effective water-in-salt electrolyte enables highly stable operation of a 2.15-V aqueous lithium-ion battery. Cell Rep. Physical Science. 2022, 3 (1), 100688. https://doi.org/10.1016/j.xcrp.2021.100688
Wang, X.; Bak, S. M.; Han, M.; Shuck, C. E.; McHugh, C.; Li, K.; Li, J.; Tang, J.; Gogotsi, Y. Surface Redox Pseudocapacitance of Partially Oxidized Titanium Carbide MXene in Water-in-Salt Electrolyte. ACS Energy Lett. 2022, 7 (1), 30–35. https://doi.org/10.1021/acsenergylett.1c02262
Wu, X.; Xu, Y.; Zhang, C.; Leonard, D. P.; Markir, A.; Lu, J.; Ji, X. Reverse Dual-Ion Battery via a ZnCl2 Water-in-Salt Electrolyte. J. Am. Chem. Soc. 2019, 141 (15), 6338–6344. https://doi.org/10.1021/jacs.9b00617
Xu, J.; Ji, X.; Zhang, J.; Yang, C.; Wang, P.; Liu, S.; Ludwig, K.; Chen, F.; Kofinas, P.; Wang, C. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 || Li4Ti5O12 pouch cells. Nat. Energy. 2022, 7 (2), 186–193. https://doi.org/10.1038/s41560-021-00977-5
Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A.; Eidson, N.; Wang, C.; Xu, K. 4.0 V Aqueous Li-Ion batteries. Joule. 2017, 1 (1), 122–132. https://doi.org/10.1016/j.joule.2017.08.009
Yang, B.; Qin, T.; Du, Y.; Zhang, Y.; Wang, J.; Chen, T.; Ge, M.; Bin, D.; Ge, C.; Lu, H. Rocking-chair proton battery based on a low-cost “water in salt” electrolyte. Chem. Commun. 2022, 58 (10), 1550–1553. https://doi.org/10.1039/D1CC06325A
Yassine, M.; Fabris, D. Performance of commercially available supercapacitors. Energies. 2017, 10 (9), 1340. https://doi.org/10.3390/en10091340
Zafar, Z. A.; Abbas, G.; Silhavik, M.; Knizek, K.; Kaman, O.; Sonia, F. J.; Kumar, P.; Jiricek, P.; Houdková, J.; Frank, O.; Cervenka, J. Reversible anion intercalation into graphite from aluminum perchlorate “water‐in‐salt” electrolyte. Electrochim. Acta. 2022a, 404, 139754. https://doi.org/10.1016/j.electacta.2021.139754
Zafar, Z. A.; Abbas, G.; Knizek, K.; Silhavik, M.; Kumar, P.; Jiricek, P.; Houdková, J.; Frank, O.; Cervenka, J. Chaotropic anion based “water-in-salt” electrolyte realizes a high voltage zn-graphite dual-ion battery. J. Mater. Chem. A. 2022b, 10 (4), 2064–2074. https://doi.org/10.1039/D1TA10122F
Zhang, L.; Rodríguez-Pérez, I. A.; Jiang, H.; Zhang, C.; Leonard, D. P.; Guo, Q.; Wang, W.; Han, S.; Wang, L.; Ji, X. ZnCl2 “Water-in-Salt” electrolyte transforms the performance of vanadium oxide as a zn battery cathode. Adv. Funct. Mater. 2019, 29 (30), 1902653. https://doi.org/10.1002/adfm.201902653
Zhang, Y.; Xu, J.; Li, Z.; Wang, Y.; Wang, S.; Dong, X.; Wang, Y. All-climate aqueous Na-Ion batteries using “water-in-salt” electrolyte. Sci. Bull. 2022, 67 (2), 161–170. https://doi.org/10.1016/j.scib.2021.08.010
Zheng, W.; Halim, J.; Rosen, J.; Barsoum, M. W. Aqueous electrolytes, MXene‐Based supercapacitors and their self‐discharge. Adv. Sustain. Syst. 2022, 3 (2), 2100147. https://doi.org/10.1002/aesr.202100147
Zhu, J.; Xu, Y.; Fu, Y.; Xiao, D.; Li, Y.; Liu, L.; Wang, Y.; Zhang, Q.; Li, J.; Yan, X. Hybrid aqueous/nonaqueous water-in-bisalt electrolyte enables safe dual ion batteries. Small. 2020, 16 (17), 1905838. https://doi.org/10.1002/smll.201905838
Zhu, Y.; Zheng, S.; Lu, P.; Ma, J.; Das, P.; Su, F.; Cheng, H.-M.; Wu, Z.-S. Kinetic regulation of mxene with water-in-licl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Ver. 2022, nwac024. https://doi.org/10.1093/nsr/nwac024