Screening of coformers for quercetin cocrystals through mechanochemical methods
Main Article Content
Abstract
Quercetin (QUE) is a nutraceutical compound that exhibits pharmacological properties such as antioxidant, cardioprotective, anti-ulcer, and anti-inflammatory effects. Although QUE is well-known for its benefits, its efficacy is limited due to low solubility. Thus, cocrystallization acts as an interesting approach to improve the solubility—among other properties—of this compound. In this work, cocrystallization screening was applied through neat grinding (NG) and liquid-assisted grinding (LAG), in which QUE and four cocrystal formers (benzamide, picolinamide, isonicotinamide, and pyrazinoic acid) were tested. The precursors and QUE-coformer systems were characterized using thermoanalytical techniques (TG-DTA), X-ray powder diffraction (XRPD), and Fourier transform infrared (FTIR) spectroscopy. The results showed the formation of QUE cocrystals with picolinamide and isonicotinamide coformers in a 1:1 stoichiometric ratio. Furthermore, although coformers are isomers, spectroscopic and thermal data suggest that the supramolecular synthons involved in cocrystallization are different.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Aakeröy, C.B.; Forbes, S.; Desper, J. Using Cocrystals To Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug. J. Am. Chem. Soc. 2009, 131 (47), 17048–17049. https://doi.org/10.1021/ja907674c
Akalin, E.; Akyuz, S. Vibrational analysis of free and hydrogen bonded complexes of nicotinamide and picolinamide. Vib. Spectrosc. 2006, 42 (2), 333–340. https://doi.org/10.1016/j.vibspec.2006.05.015
Almeida, A. C. de; Ferreira, P. O.; Torquetti, C.; Ekawa, B.; Carvalho, A. C. S.; Santos, E. C. dos; Caires, F. J. Mechanochemical synthesis, characterization and thermal study of new cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid. J. Therm. Anal. Calorim. 2020, 140 (5), 2293–2303. https://doi.org/10.1007/s10973-019-08958-3
Borghetti, G. S.; Carini, J. P.; Honorato, S. B.; Ayala, A. P.; Moreira, J. C. F.; Bassani, V. L. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim. Acta. 2012, 539, 109–114. https://doi.org/10.1016/j.tca.2012.04.015
Costa, E. M. da; Barbosa Filho, J. M.; Nascimento, T. G. do; Macêdo, R. O. Thermal characterization of the quercetin and rutin flavonoids. Thermochim. Acta. 2002, 392–393, 79–84. https://doi.org/10.1016/S0040-6031(02)00087-4
Dubey, R.; Desiraju, G. R. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids. IUCrJ. 2015, 2(Part 4), 402–408. https://doi.org/10.1107/S2052252515009884
Évora, A. O. L.; Castro, R. A. E.; Maria, T. M. R.; Rosado, M. T. S.; Silva, M. R.; Canotilho, J.; Eusébio, M. E. S. Resolved structures of two picolinamide polymorphs. Investigation of the dimorphic system behaviour under conditions relevant to co-crystal synthesis. CrystEngComm. 2012, 14 (24), 8649–8657. https://doi.org/10.1039/c2ce26244d
Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009, 11 (3), 418–426. https://doi.org/10.1039/B815174A
Holanda, B. B. C.; Alarcon, R. T.; Gaglieri, C.; Souza, A. R. de; Castro, R. A. E.; Rosa, P. C. P.; Tangerino, D. J. A.; Bannach, G. Thermal studies, degradation kinetic, equilibrium solubility, DFT, MIR, and XRPD analyses of a new cocrystal of gemfibrozil and isonicotinamide. J. Therm. Anal. Calorim. 2019, 136 (5), 2049–2062. https://doi.org/10.1007/s10973-018-7873-8
Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 2018, 10 (1), 18. https://doi.org/10.3390/pharmaceutics10010018
Karimi-Jafari, M.; Padrela, L.; Walker, G. M.; Croker, D. M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst. Growth Des. 2018, 18 (10), 6370–6387. https://doi.org/10.1021/acs.cgd.8b00933
Kavanagh, O. N.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today. 2019, 24 (3), 796–804. https://doi.org/10.1016/j.drudis.2018.11.023
Madaan, K.; Lather, V.; Pandita, D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. 2016, 23 (1), 254–262. https://doi.org/10.3109/10717544.2014.910564
Nguyen, T. T.; Jeong, J.-H. Development of a single-jet electrospray method for producing quercetin-loaded poly (lactic-co-glycolic acid) microspheres with prolonged-release patterns. J. Drug Deliv. Sci. Technol. 2018, 47, 268–274. https://doi.org/10.1016/j.jddst.2018.07.005
Panzade, P.; Shendarkar, G.; Shaikh, S.; Rathi, P. B. Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation. Adv. Pharm. Bull. 2017, 7 (3), 399–408. https://doi.org/10.15171/apb.2017.048
Patel, R. D.; Raval, M. K.; Bagathariya, A. A.; Sheth, N. R. Functionality improvement of Nimesulide by eutectic formation with nicotinamide: Exploration using temperature-composition phase diagram. Adv. Powder Technol. 2019, 30 (5), 961–973. https://doi.org/10.1016/j.apt.2019.02.010
Perpétuo, G. L.; Gálico, D. A.; Guerra, R. B.; Moreira, R.; Chierice, G. O.; Bannach, G. Thermal, spectroscopic and DFT studies of solid benzamide. Braz. J. Therm. Anal.2014, 3 (1–2), 5–10. https://doi.org/10.18362/bjta.v3i1-2.23
Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm.2011, 419 (1–2), 1–11. https://doi.org/10.1016/j.ijpharm.2011.07.037
Rajput, L.; Sanphui, P.; Desiraju, G. R. New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals, and Solubility. Cryst. Growth Des. 2013, 13 (8), 3681–3690. https://doi.org/10.1021/cg4007058
Ramešová, Š.; Sokolová, R.; Degano, I.; Bulíčková, J.; Žabka, J.; Gál, M. On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions. Anal. Bioanal. Chem. 2012, 402 (2), 975–982. https://doi.org/10.1007/s00216-011-5504-3
Rautenberg, M.; Bhattacharya, B.; Akhmetova, I.; Emmerling, F. Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N′-Dipyridines: Structural diversity with varying ligand flexibility. J. Mol. Struct. 2020, 1217, 128303. https://doi.org/10.1016/j.molstruc.2020.128303
Ravikumar, N.; Gaddamanugu, G.; Solomon, K. A. Structural, spectroscopic (FT-IR, FT-Raman) and theoretical studies of the 1:1 cocrystal of isoniazid with p-coumaric acid. J. Mol. Struct. 2013, 1033, 272–279. https://doi.org/10.1016/j.molstruc.2012.10.029
Refat, M. S.; Hamza, R. Z.; Adam, A. M. A.; Saad, H. A.; Gobouri, A. A.; Al-Harbi, F. S.; Al-Salmi, F. A.; Altalhi, T.; El-Megharbel, S. M. Quercetin/Zinc complex and stem cells: A new drug therapy to ameliorate glycometabolic control and pulmonary dysfunction in diabetes mellitus: Structural characterization and genetic studies. PLoS One. 2021, 16 (3), e0246265. https://doi.org/10.1371/journal.pone.0246265
Sathisaran, I.; Dalvi, S. V. Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics. 2018, 10 (3), 108. https://doi.org/10.3390/pharmaceutics10030108
Sinha, A. S.; Maguire, A. R.; Lawrence, S. E. Cocrystallization of Nutraceuticals. Cryst. Growth Des. 2015, 15 (2), 984–1009. https://doi.org/10.1021/cg501009c
Smith, A. J.; Kavuru, P.; Wojtas, L.; Zaworotko, M. J.; Shytle, R. D. Cocrystals of Quercetin with Improved Solubility and Oral Bioavailability. Mol. Pharm. 2011, 8 (5), 1867-1876. https://doi.org/10.1021/mp200209j
Su, H.; He, H.; Tian, Y.; Zhao, N.; Sun, F.; Zhang, X.; Jiang, Q.; Zhu, G. Syntheses and characterizations of two curcumin-based cocrystals. Inorg. Chem. Commun.2015, 55, 92–95. https://doi.org/10.1016/j.inoche.2015.03.027
Tang, Y.; Nakashima, S.; Saiki, S.; Myoi, Y.; Abe, N.; Kuwazuru, S.; Zhu, B.; Ashida, H.; Murata, Y.; Nakamura, Y. 3,4-Dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Res. Int. 2016, 89 (1), 716–723. https://doi.org/10.1016/j.foodres.2016.09.034
Thakuria, R.; Sarma, B. Drug‑Drug and Drug‑Nutraceutical Cocrystal/Salt as Alternative Medicine for Combination Therapy: A Crystal Engineering Approach. Crystals. 2018, 8 (2), 101. https://doi.org/10.3390/cryst8020101
Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods. 2016, 5 (4), 88. https://doi.org/10.3390/foods5040088
Vasisht, K.; Chadha, K.; Karan, M.; Bhalla, Y.; Jena, A.K.; Chadha, R. Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization. CrystEngComm. 2016, 18 (8), 1403–1415. https://doi.org/10.1039/C5CE01899D
Yadav, A. V.; Shete, A. S.; Dabke, A. P.; Kulkarni, P. V.; Sakhare, S.S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009, 71 (4), 359–370. https://doi.org/10.4103/0250-474X.57283
Yousef, M.A.E.; Vangala, V.R. Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Cryst. Growth Des. 2019, 19 (12), 7420–7438. https://doi.org/10.1021/acs.cgd.8b01898
Yurdakul, Ş.; Ataç, A. Fourier Transform‐Infrared Spectroscopic Study of IsonicotinamideMetal(II) Tetracyanonickelate and Halide Complexes. Spectrosc. Lett.2004, 37 (1), 33–42. https://doi.org/10.1081/SL-120028421