Screening of coformers for quercetin cocrystals through mechanochemical methods

Main Article Content

Fayene Zeferino Ribeiro de Souza
Amanda Cosmo de Almeida
Patrícia Osorio Ferreira
Richard Perosa Fernandes
Flávio Junior Caires

Abstract

Quercetin (QUE) is a nutraceutical compound that exhibits pharmacological properties such as antioxidant, cardioprotective, anti-ulcer, and anti-inflammatory effects. Although QUE is well-known for its benefits, its efficacy is limited due to low solubility. Thus, cocrystallization acts as an interesting approach to improve the solubility—among other properties—of this compound. In this work, cocrystallization screening was applied through neat grinding (NG) and liquid-assisted grinding (LAG), in which QUE and four cocrystal formers (benzamide, picolinamide, isonicotinamide, and pyrazinoic acid) were tested. The precursors and QUE-coformer systems were characterized using thermoanalytical techniques (TG-DTA), X-ray powder diffraction (XRPD), and Fourier transform infrared (FTIR) spectroscopy. The results showed the formation of QUE cocrystals with picolinamide and isonicotinamide coformers in a 1:1 stoichiometric ratio. Furthermore, although coformers are isomers, spectroscopic and thermal data suggest that the supramolecular synthons involved in cocrystallization are different.

Metrics

Metrics Loading ...

Article Details

How to Cite
Souza, F. Z. R. de, Almeida, A. C. de, Ferreira, P. O., Fernandes, R. P., & Caires, F. J. (2022). Screening of coformers for quercetin cocrystals through mechanochemical methods. Eclética Química, 47(1), 64–75. https://doi.org/10.26850/1678-4618eqj.v47.1.2022.p64-75
Section
Original articles

References

Aakeröy, C.B.; Forbes, S.; Desper, J. Using Cocrystals To Systematically Modulate Aqueous Solubility and Melting Behavior of an Anticancer Drug. J. Am. Chem. Soc. 2009, 131 (47), 17048–17049. https://doi.org/10.1021/ja907674c

Akalin, E.; Akyuz, S. Vibrational analysis of free and hydrogen bonded complexes of nicotinamide and picolinamide. Vib. Spectrosc. 2006, 42 (2), 333–340. https://doi.org/10.1016/j.vibspec.2006.05.015

Almeida, A. C. de; Ferreira, P. O.; Torquetti, C.; Ekawa, B.; Carvalho, A. C. S.; Santos, E. C. dos; Caires, F. J. Mechanochemical synthesis, characterization and thermal study of new cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid. J. Therm. Anal. Calorim. 2020, 140 (5), 2293–2303. https://doi.org/10.1007/s10973-019-08958-3

Borghetti, G. S.; Carini, J. P.; Honorato, S. B.; Ayala, A. P.; Moreira, J. C. F.; Bassani, V. L. Physicochemical properties and thermal stability of quercetin hydrates in the solid state. Thermochim. Acta. 2012, 539, 109–114. https://doi.org/10.1016/j.tca.2012.04.015

Costa, E. M. da; Barbosa Filho, J. M.; Nascimento, T. G. do; Macêdo, R. O. Thermal characterization of the quercetin and rutin flavonoids. Thermochim. Acta. 2002, 392–393, 79–84. https://doi.org/10.1016/S0040-6031(02)00087-4

Dubey, R.; Desiraju, G. R. Combinatorial selection of molecular conformations and supramolecular synthons in quercetin cocrystal landscapes: a route to ternary solids. IUCrJ. 2015, 2(Part 4), 402–408. https://doi.org/10.1107/S2052252515009884

Évora, A. O. L.; Castro, R. A. E.; Maria, T. M. R.; Rosado, M. T. S.; Silva, M. R.; Canotilho, J.; Eusébio, M. E. S. Resolved structures of two picolinamide polymorphs. Investigation of the dimorphic system behaviour under conditions relevant to co-crystal synthesis. CrystEngComm. 2012, 14 (24), 8649–8657. https://doi.org/10.1039/c2ce26244d

Friščić, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009, 11 (3), 418–426. https://doi.org/10.1039/B815174A

Holanda, B. B. C.; Alarcon, R. T.; Gaglieri, C.; Souza, A. R. de; Castro, R. A. E.; Rosa, P. C. P.; Tangerino, D. J. A.; Bannach, G. Thermal studies, degradation kinetic, equilibrium solubility, DFT, MIR, and XRPD analyses of a new cocrystal of gemfibrozil and isonicotinamide. J. Therm. Anal. Calorim. 2019, 136 (5), 2049–2062. https://doi.org/10.1007/s10973-018-7873-8

Karagianni, A.; Malamatari, M.; Kachrimanis, K. Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics. 2018, 10 (1), 18. https://doi.org/10.3390/pharmaceutics10010018

Karimi-Jafari, M.; Padrela, L.; Walker, G. M.; Croker, D. M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst. Growth Des. 2018, 18 (10), 6370–6387. https://doi.org/10.1021/acs.cgd.8b00933

Kavanagh, O. N.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov. Today. 2019, 24 (3), 796–804. https://doi.org/10.1016/j.drudis.2018.11.023

Madaan, K.; Lather, V.; Pandita, D. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid. Drug Deliv. 2016, 23 (1), 254–262. https://doi.org/10.3109/10717544.2014.910564

Nguyen, T. T.; Jeong, J.-H. Development of a single-jet electrospray method for producing quercetin-loaded poly (lactic-co-glycolic acid) microspheres with prolonged-release patterns. J. Drug Deliv. Sci. Technol. 2018, 47, 268–274. https://doi.org/10.1016/j.jddst.2018.07.005

Panzade, P.; Shendarkar, G.; Shaikh, S.; Rathi, P. B. Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation. Adv. Pharm. Bull. 2017, 7 (3), 399–408. https://doi.org/10.15171/apb.2017.048

Patel, R. D.; Raval, M. K.; Bagathariya, A. A.; Sheth, N. R. Functionality improvement of Nimesulide by eutectic formation with nicotinamide: Exploration using temperature-composition phase diagram. Adv. Powder Technol. 2019, 30 (5), 961–973. https://doi.org/10.1016/j.apt.2019.02.010

Perpétuo, G. L.; Gálico, D. A.; Guerra, R. B.; Moreira, R.; Chierice, G. O.; Bannach, G. Thermal, spectroscopic and DFT studies of solid benzamide. Braz. J. Therm. Anal.2014, 3 (1–2), 5–10. https://doi.org/10.18362/bjta.v3i1-2.23

Qiao, N.; Li, M.; Schlindwein, W.; Malek, N.; Davies, A.; Trappitt, G. Pharmaceutical cocrystals: An overview. Int. J. Pharm.2011, 419 (1–2), 1–11. https://doi.org/10.1016/j.ijpharm.2011.07.037

Rajput, L.; Sanphui, P.; Desiraju, G. R. New Solid Forms of the Anti-HIV Drug Etravirine: Salts, Cocrystals, and Solubility. Cryst. Growth Des. 2013, 13 (8), 3681–3690. https://doi.org/10.1021/cg4007058

Ramešová, Š.; Sokolová, R.; Degano, I.; Bulíčková, J.; Žabka, J.; Gál, M. On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions. Anal. Bioanal. Chem. 2012, 402 (2), 975–982. https://doi.org/10.1007/s00216-011-5504-3

Rautenberg, M.; Bhattacharya, B.; Akhmetova, I.; Emmerling, F. Mechanochemical and solution syntheses of two novel cocrystals of orcinol with two N,N′-Dipyridines: Structural diversity with varying ligand flexibility. J. Mol. Struct. 2020, 1217, 128303. https://doi.org/10.1016/j.molstruc.2020.128303

Ravikumar, N.; Gaddamanugu, G.; Solomon, K. A. Structural, spectroscopic (FT-IR, FT-Raman) and theoretical studies of the 1:1 cocrystal of isoniazid with p-coumaric acid. J. Mol. Struct. 2013, 1033, 272–279. https://doi.org/10.1016/j.molstruc.2012.10.029

Refat, M. S.; Hamza, R. Z.; Adam, A. M. A.; Saad, H. A.; Gobouri, A. A.; Al-Harbi, F. S.; Al-Salmi, F. A.; Altalhi, T.; El-Megharbel, S. M. Quercetin/Zinc complex and stem cells: A new drug therapy to ameliorate glycometabolic control and pulmonary dysfunction in diabetes mellitus: Structural characterization and genetic studies. PLoS One. 2021, 16 (3), e0246265. https://doi.org/10.1371/journal.pone.0246265

Sathisaran, I.; Dalvi, S. V. Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics. 2018, 10 (3), 108. https://doi.org/10.3390/pharmaceutics10030108

Sinha, A. S.; Maguire, A. R.; Lawrence, S. E. Cocrystallization of Nutraceuticals. Cryst. Growth Des. 2015, 15 (2), 984–1009. https://doi.org/10.1021/cg501009c

Smith, A. J.; Kavuru, P.; Wojtas, L.; Zaworotko, M. J.; Shytle, R. D. Cocrystals of Quercetin with Improved Solubility and Oral Bioavailability. Mol. Pharm. 2011, 8 (5), 1867-1876. https://doi.org/10.1021/mp200209j

Su, H.; He, H.; Tian, Y.; Zhao, N.; Sun, F.; Zhang, X.; Jiang, Q.; Zhu, G. Syntheses and characterizations of two curcumin-based cocrystals. Inorg. Chem. Commun.2015, 55, 92–95. https://doi.org/10.1016/j.inoche.2015.03.027

Tang, Y.; Nakashima, S.; Saiki, S.; Myoi, Y.; Abe, N.; Kuwazuru, S.; Zhu, B.; Ashida, H.; Murata, Y.; Nakamura, Y. 3,4-Dihydroxyphenylacetic acid is a predominant biologically-active catabolite of quercetin glycosides. Food Res. Int. 2016, 89 (1), 716–723. https://doi.org/10.1016/j.foodres.2016.09.034

Thakuria, R.; Sarma, B. Drug‑Drug and Drug‑Nutraceutical Cocrystal/Salt as Alternative Medicine for Combination Therapy: A Crystal Engineering Approach. Crystals. 2018, 8 (2), 101. https://doi.org/10.3390/cryst8020101

Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods. 2016, 5 (4), 88. https://doi.org/10.3390/foods5040088

Vasisht, K.; Chadha, K.; Karan, M.; Bhalla, Y.; Jena, A.K.; Chadha, R. Enhancing biopharmaceutical parameters of bioflavonoid quercetin by cocrystallization. CrystEngComm. 2016, 18 (8), 1403–1415. https://doi.org/10.1039/C5CE01899D

Yadav, A. V.; Shete, A. S.; Dabke, A. P.; Kulkarni, P. V.; Sakhare, S.S. Co-crystals: A novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J. Pharm. Sci. 2009, 71 (4), 359–370. https://doi.org/10.4103/0250-474X.57283

Yousef, M.A.E.; Vangala, V.R. Pharmaceutical Cocrystals: Molecules, Crystals, Formulations, Medicines. Cryst. Growth Des. 2019, 19 (12), 7420–7438. https://doi.org/10.1021/acs.cgd.8b01898

Yurdakul, Ş.; Ataç, A. Fourier Transform‐Infrared Spectroscopic Study of IsonicotinamideMetal(II) Tetracyanonickelate and Halide Complexes. Spectrosc. Lett.2004, 37 (1), 33–42. https://doi.org/10.1081/SL-120028421