Geographical chemical variability and processing oxidation of volatile compounds of Casearia sylvestris leaves
Main Article Content
Abstract
The Casearia sylvestris Sw. dried leaf essential oil (EO) contains sesquiterpenes as the main components. However, the volatile components in the in natura leaves remain unknown. This study compares the volatile chemicals in the in natura leaves and dried leaf EO of two C. sylvestris populations from Atlantic Forest and Cerrado. The volatile compounds were directly analysed by thermal desorption (TD) coupled to gas chromatography mass spectrometry (GC-MS); the dried leaf EO composition was determined by GC-MS. All the identified compounds were sesquiterpenes, and the major components were (E)-caryophyllene, bicyclogermacrene, β-elemene, spathulenol, and caryophyllene oxide. In both populations, the sesquiterpene hydrocarbon content and the oxygenated sesquiterpene content respectively decreased and increased on going from the in natura leaves to the dried leaf essential oil, indicating that drying and/or hydrodistillation modified the volatile chemical composition by generating oxidation artifacts. Results suggested that (E)-caryophyllene and bicyclogermacrene may be oxidized during the process to yield caryophyllene oxide and spathulenol, respectively. The two C. sylvestris populations also differed in terms of volatile chemical composition.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, Allured Publishing Corporation, 2007.
Agência Nacional de Vigilância Sanitária (Anvisa). Farmacopeia Brasileira; Anvisa, 2010.
Arbulu, M.; Sampedro, M. C.; Sanchez-Ortega, A.; Gómez-Caballero, A.; Unceta, N.; Goicolea, M. A.; Barrio, R. J. Characterisation of the flavour profile from Graciano Vitis vinifera wine variety by a novel dual stir bar sorptive extraction methodology coupled to thermal desorption and gas chromatography–mass spectrometry. Anal. Chim. Acta 2013, 777, 41–48. https://doi.org/10.1016/j.aca.2013.03.024.
Bou, D. D.; Lago, J. H. G.; Figueiredo, C. R.; Matsuo, A. L.; Guadagnin, R. C.; Soares, M. G.; Sartorelli, P. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives. Molecules 2013, 18 (8), 9477–9487. https://doi.org/10.3390/molecules18089477.
Carvalho, F. A.; Aguilar, P. P.; Oda, F. B.; Uchina, H. S.; Tininis, A. G.; Crevelin, E. J.; Crotti, A. E. M.; Santos, A. G. Chemical variability between different organs of the medicinal plant Casearia sylvestris. Rev. Ciênc. Farm. Básica Apl. 2018, 39, e639.
Gobbo-Neto, L.; Lopes, N. P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quím. Nova 2007, 30 (2), 374–381. https://doi.org/10.1590/S0100-40422007000200026.
Gopalakrishnan, N. Studies on the storage quality of carbon dioxide-extracted cardamom and clove bud oils. J. Agric. Food Chem. 1994, 42 (3), 796–798. https://doi.org/10.1021/jf00039a039.
Kiazolu, J. B.; Intisar, A.; Zhang, L.; Wang, Y.; Zhang, R.; Wu, Z.; Zhang, W. Phytochemical screening and chemical variability in volatile oils of aerial parts of Morinda morindoides. Nat. Prod. Res. 2016, 30 (19), 2249–2252. https://doi.org/10.1080/14786419.2016.1154058.
Moreira, R. R. D., Santos, A. G., Carvalho, F. A., Perego, C. H., Crevelin, E. J., Crotti, A. E. M., Cogo, J., Cardoso, M. L. C., Nakamura, C.V. Antileishmanial activity of Melampodium divaricatum and Casearia sylvestris essential oils on Leishmania amazonensis. Ver. Inst. Med. Trop. S. Paulo 2019, 61, e33. https://doi.org/10.1590/s1678-9946201961033.
Nascimento, K. F. do; Moreira, F. M. F.; Santos, J. A.; Kassuya, C. A. L.; Croda, J. H. R.; Cardoso, C. A. L.; Vieira, M. C.; Ruiz, A. L. T. G.; Foglio, M. A.; Carvalho, J. E.; Formagio, A. S. N. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. https://doi.org/10.1016/j.jep.2017.08.030.
Njoroge, S. M.; Ukeda, H.; Sawamura, M. Changes in the volatile composition of yuzu (Citrus junos Tanaka) cold-pressed oil during storage. J. Agric. Food Chem. 1996, 44 (2), 550–556. https://doi.org/10.1021/jf950284k.
Njoroge, S. M.; Ukeda, H.; Sawamura, M. Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage. J. Agric. Food Chem. 2003, 51 (14), 4029–4035. https://doi.org/10.1021/jf021215q.
Sköld, M.; Karlberg, A.-T.; Matura, M.; Börje, A. The fragrance chemical β-caryophyllene–air oxidation and skin sensitization. Food Chem. Toxicol. 2006, 44 (4), 538–545. https://doi.org/10.1016/j.fct.2005.08.028.
Sousa, F. G.; Schneider, N. F. Z.; Mendes, C. E.; de Moura, N. F.; Denardin, R. B. N.; Matuo, R.; Mantovani, M. S. Clastogenic and Anticlastogenic Effect of the Essential Oil from Casearia sylvestris Swart. J. Essent. Oil Res. 2007, 19 (4), 376–378. https://doi.org/10.1080/10412905.2007.9699309.
Spósito, L.; Oda, F. B.; Vieira, J. H.; Carvalho, F. A.; Ramos, M. A. S.; Castro, R. C.; Crevelin, E. J.; Crotti, A. E. M.; Santos, A. G.; da Silva, P. B.; Chorilli, M.; Bauab, T. M. In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. J. Ethnopharmacol. 2019, 233, 1–12. https://doi.org/10.1016/j.jep.2018.12.032.
Telascrea, M.; de Araújo, C. C.; Cavalheiro, A. J.; Marques, M. O. M.; Facanali, R.; de Moraes, P. L. R. Essential oils from leaves of Cryptocarya spp from the atlantic rain forest. Quím. Nova 2008, 31 (3), 503–507. https://doi.org/10.1590/S0100-40422008000300007.
Touaibia, T.; Boutekedjiret, T. C.; Perino, S.; Chemat, F. Natural Terpenes as Building Blocks for Green Chemistry. In Plant Based “Green Chemistry 2.0”; Li, Y.; Chemat, F., Eds.; Springer, 2019; pp 171-195. https://doi.org/10.1007/978-981-13-3810-6_7.
Toyota, M.; Koyama, H.; Mizutani, M.; Asakawa, Y. (–)-ent-spathulenol isolated from liverworts is an artefact. Phytochemistry 1996, 41 (5), 1347–1350. https://doi.org/10.1016/0031-9422(95)00798-9.
Van Den Dool, H., Kratz, P. D. A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. A 1963, 11, 463–471. https://doi.org/10.1016/S0021-9673(01)80947-X.
Xia, L.; Guo, Q.; Tu, P.; Chai, X. The genus Casearia: a phytochemical and pharmacological overview. Phytochem. Rev. 2015, 14, 99–135. https://doi.org/10.1007/s11101-014-9336-6.