Photoperoxidation of ciprofloxacin antibiotic in aqueous medium using Fe3-XO4-Y-TiO2 particles as catalyst

Main Article Content

Ismael Laurindo Costa Junior
Kevin Augusto Ferreira
Cesar Augusto Kappes
Renata Mello Giona

Abstract

Conventional treatment processes are not effective in removing micropollutants such as antibiotics and other drugs present in wastewater, and degradation methods based on advanced oxidative processes become attractive. Herein, it was synthesized Fe3-xO4-y-TiO2 particles by coprecipitation method and they were heat-treated at 100, 400, and 800 °C. The obtained solids were characterized by X-ray diffraction and thermogravimetric analysis and analytical determinations were performed using ultraviolet-visible (UV-Vis) spectrophotometry. The particles were evaluated in photoperoxidation processes on the degradation of the ciprofloxacin antimicrobial in an aqueous solution. The studies took place at pH 9; with an H2O2 concentration of 31 mg L–1 and particle mass 0.22 g L–1 previously defined and, in these conditions, degradation percentages between 40 and 85% were observed, with the removal in the Photo/H2O2/Fe3-xO4-y-TiO2 800 °C. The kinetic study performed for this process revealed the process adjusts to the first-order kinetics during the 120 min of reaction. The use of the catalyst can be attractive with the potential for degradation of the studied antimicrobial.

Metrics

Metrics Loading ...

Article Details

How to Cite
Costa Junior, I. L., Ferreira, K. A., Kappes, C. A., & Giona, R. M. (2022). Photoperoxidation of ciprofloxacin antibiotic in aqueous medium using Fe3-XO4-Y-TiO2 particles as catalyst. Eclética Química, 47(1), 55–63. https://doi.org/10.26850/1678-4618eqj.v47.1.2022.p55-63
Section
Original articles

References

Barancheshme, F.; Munir, M. Development of antibiotic resistance in wastewater treatment plants. In Antimicrobial resistance: A global threat; IntechOpen, 2019; pp 75–91. https://doi.org/10.5772/intechopen.81538

Barret, M.; Carrère, H.; Latrille, E.; Wisniewski, C.; Patureau, D. Micropollutant and sludge characterization for modeling sorption equilibria. Environ. Sci. Technol. 2010, 44 (3), 1100–1106. https://doi.org/10.1021/es902575d

Borges, E.; García, D. M.; Hernández, T.; Ruiz-Morales, J. C.; Esparza, P. Supported photocatalyst for removal of emerging contaminants from wastewater in a continuous packed-bed photoreactor configuration. Catalysts 2015, 5 (1), 77–87. https://doi.org/10.3390/catal5010077

Borges, S. S.; Xavier, L. P. S.; Silva, A. C.; Aquino, S. F. Imobilização de dióxido de titânio em diferentes materiais suporte para o emprego em fotocatálise heterogênea. Quím. Nova 2016, 39 (7), 836–844. https://doi.org/10.5935/0100-4042.20160106

Bound, J. P.; Kitsou, K.; Voulvoulis, N. Household disposal of pharmaceuticals and perception of risk to the environment. Environ. Toxicol. Pharmacol. 2006, 21 (3), 301–307. https://doi.org/10.1016/j.etap.2005.09.006

Carabineiro, S. A. C.; Thavorn-amornsri, T.; Pereira, M. F. R.; Serp, P.; Figueiredo, J. L. Comparison between activated carbon; carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 2012, (1), 29–34. https://doi.org/10.1016/j.cattod.2011.08.020

Carlson, J. C.; Stefan, M. I.; Parnis, J. M.; Metcalfe, C. D. Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. Water Res. 2015, 84, 350–361. https://doi.org/10.1016/j.watres.2015.04.013

Ciccotti, L.; Vale, L. A. S.; Hewer, T. L. R.; Freire, R. S. Fe3O4@TiO2 preparation and catalytic activity in heterogeneous photocatalytic and ozonation processes. Catal. Sci. Technol. 2015, 5 (2), 1143–1152. https://doi.org/10.1039/C4CY01242A

Costa Junior, I. L.; Pletsch, A. L.; Torres, Y. R. Ocorrência de fármacos antidepressivos no meio ambiente: Revisão. Rev. Virtual Quím. 2014, 6 (5), 1408–1431. https://doi.org/10.5935/1984-6835.20140092

Das, R. K.; Kar, J. P.; Mohapatra S. Enhanced photodegradation of organic pollutants by carbon quantum dot (CQD) deposited Fe3O4@mTiO2 nano-pom-pom balls. Ind. Eng. Chem. Res. 2016, 55 (20), 5902–5910. https://doi.org/10.1021/acs.iecr.6b00792

Dorigon, L.; Frota, J. P. R. A.; Kreutz, J. C.; Giona R. M.; Moisés, M. P.; Bail, A. Synthesis and characterization of mesoporous silica-coated magnetite containing cetyltrimethylammonium bromide and evaluation on the adsorption of sodium dodecylbenzenesulfonate. Appl. Surf. Sci. 2017, 420, 954–962. https://doi.org/10.1016/j.apsusc.2017.05.249

Fabbri, D.; López-Muñoz, M. J.; Daniele, A.; Medana, C.; Calza, P. Photocatalytic abatement of emerging pollutants in pure water and wastewater effluent by TiO2 and Ce-ZnO: Degradation kinetics and assessment of transformation products. Photochem. Photobiol. Sci. 2019, 18 (4), 845–852. https://doi.org/10.1039/C8PP00311D

Fioreze, M.; Santos, E. P.; Schmachtenberg, N. Processos oxidativos avançados: Fundamentos e aplicação ambiental. Revista Eletrônica em Gestão; Educação e Tecnologia Ambiental 2014, 18 (1), 79–91. https://doi.org/10.5902/2236117010662

Frade, V. M. F; Dias, M.; Teixeira, A. C. S. C.; Palma, M. S. A. Environmental contamination by fluoroquinolones. Braz. J. Pharm. Sci. 2014, 50 (1), 41–54. https://doi.org/10.1590/S1984-82502011000100004

Halling-Sørensen, B.; Holten Lützhøft, H.-C.; Andersen, H. R.; Ingerslev, F. Environmental risk assessment of antibiotics: Comparison of mecillinam; trimethoprim and ciprofloxacin. J. Antimicrob. Chemother. 2000, 46 (Sippl.1), 53–58. https://doi.org/10.1093/jac/46.suppl_1.53

Hassani, A.; Khataee, A.; Karaca, S. Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A Chem. 2015, 409, 149–161. https://doi.org/10.1016/j.molcata.2015.08.020

Hörsing, M.; Kosjek, T.; Andersen, H. R.; Heath, E.; Ledin, A. Fate of citalopram during water treatment with O3, ClO2, UV and fenton oxidation. Chemosphere 2012, 89 (2), 129–135. https://doi.org/10.1016/j.chemosphere.2012.05.024

Hyland, K. C.; Dickenson, E. R. V.; Drewes, J. E.; Higgins, C. P. Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Res. 2012, 46 (6), 1958–1968. https://doi.org/10.1016/j.watres.2012.01.012

Karkman, A.; Do, T. T.; Walsh, F.; Virta, M. P. J. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018, 26 (3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005

Khashan, S; Dagher S; Tit N; Alazzam A; Obaidat I. Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles. Surf. Coat. Technol. 2017, 322, 92–98. https://doi.org/10.1016/j.surfcoat.2017.05.045

Leung, H. W.; Minh, T. B.; Murphy, M. B.; Lam, J. C. W.; So, M. K.; Martin, M.; Lam, P. K. S.; Richardson, B. J. Distribution; fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ. Int. 2012, 42, 1–9. https://doi.org/10.1016/j.envint.2011.03.004

Liu, F.; Nielsen, A. H.; Vollertsen, J. Sorption and degradation potential of pharmaceuticals in sediments from a stormwater retention pond. Water 2019, 11 (3), 526. https://doi.org/10.3390/w11030526

Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065

Mourão, H. A. J. L.; Mendonça, V. R; Malagutti, A. R.; Ribeiro, C. Nanoestruturas em fotocatálise: Uma revisão sobre estratégias de síntese de fotocatalisadores em escala nanométrica. Quím. Nova 2009, 32 (8), 2181–2190. https://doi.org/10.1590/S0100-40422009000800032

Nogueira, R. F. P.; Jardim, W. F. A fotocatálise heterogênea e sua aplicação ambiental. Quím. Nova 1998, 21 (1), 69–72. https://doi.org/10.1590/S0100-40421998000100011

Noval, V. E.; Carriazo, J. G. Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mat. Res. 2019, 22 (3), e20180660. https://doi.org/10.1590/1980-5373-mr-2018-0660

Oliveira, M.; Frihling, B. E. F.; Velasques, J.; Magalhães Filho, F. J. C.; Cavalheri, P. S; Migliolo, L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence; analytical techniques and sustainable alternatives for wastewater treatment. Sci. Total Environ. 2020, 705, 135568. https://doi.org/10.1016/j.scitotenv.2019.135568

Pang, S. C.; Kho, S. Y.; Chin, S. F. Fabrication of magnetite/silica/titania core-shell nanoparticles. J. Nanomater. 2012, 2012, 427310. https://doi.org/10.1155/2012/427310

Piai, L; Blokland, M; van der Wal, A.; Langenhoff, A. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant. J. Hazard. Mater. 2020, 388, 122028. https://doi.org/10.1016/j.jhazmat.2020.122028

Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water: A comprehensive review. Resource-Efficient Technologies 2016, 2 (4), 175–184. https://doi.org/10.1016/j.reffit.2016.09.004

Rasalingam, S.; Peng, R.; Koodali, R. T. Removal of hazardous pollutants from wastewaters: Applications of TiO2-SiO2 mixed oxide materials. J. Nanomater. 2014, 2014, 617405. https://doi.org/10.1155/2014/617405

Rogowska, J.; Cieszynska-Semenowicz, M.; Ratajczyk, W.; Wolska, L. Micropollutants in treated wastewater. Ambio 2020, 49, 487–503. https://doi.org/10.1007/s13280-019-01219-5

Sarkar, S.; Chakraborty, S.; Bhattacharjee, C. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol. Environ. Saf. 2015, 121, 263–270. https://doi.org/10.1016/j.ecoenv.2015.02.035

Sim, W.-J.; Lee, J.-W.; Oh, J.-E. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 2010, 158 (5), 1938–1947. https://doi.org/10.1016/j.envpol.2009.10.036

Souza, F. S.; Silva, V. V.; Rosin, C. K.; Hainzenreder, L.; Arenzon, A.; Féris, L. A. Comparison of different advanced oxidation processes for the removal of amoxicillin in aqueous solution. Environ. Technol. 2018, 39 (5), 549–557. https://doi.org/10.1080/09593330.2017.1306116

Teixeira, S.; Mora, H.; Blasse, L.-M.; Martins, P. M.; Carabineiro, S. A. C; Lanceros-Méndez, S.; Kühn, K.; Cuniberti, G. Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles. J. Photochem. Photobiol. A Chem. 2017, 345, 27–35. https://doi.org/10.1016/j.jphotochem.2017.05.024

Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

Wei, J. H.; Leng, C. J.; Zhang, X. Z.; Li, W. H.; Liu, Z. Y.; Shi, J. Synthesis and magnetorheological effect of Fe3O4-TiO2 nanocomposite. J. Phys.: Conf. Ser. 2009, 149, 012083. https://doi.org/10.1088/1742-6596/149/1/012083

Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397. https://doi.org/10.1007/s11671-008-9174-9

Wu, M.-H.; Que, C.-J.; Xu, G.; Sun, Y.-F.; Ma, J.; Xu, H.; Sun, R.; Tang, L. Occurrence; fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol. Environ. Saf. 2016, 132, 132–139. https://doi.org/10.1016/j.ecoenv.2016.06.006

Yang, J.; Chen, C.; Ji, H.; Ma, W.; Zhao, J. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 2005, 109 (46), 21900–21907. https://doi.org/10.1021/jp0540914