Photoperoxidation of ciprofloxacin antibiotic in aqueous medium using Fe3-XO4-Y-TiO2 particles as catalyst
Main Article Content
Abstract
Conventional treatment processes are not effective in removing micropollutants such as antibiotics and other drugs present in wastewater, and degradation methods based on advanced oxidative processes become attractive. Herein, it was synthesized Fe3-xO4-y-TiO2 particles by coprecipitation method and they were heat-treated at 100, 400, and 800 °C. The obtained solids were characterized by X-ray diffraction and thermogravimetric analysis and analytical determinations were performed using ultraviolet-visible (UV-Vis) spectrophotometry. The particles were evaluated in photoperoxidation processes on the degradation of the ciprofloxacin antimicrobial in an aqueous solution. The studies took place at pH 9; with an H2O2 concentration of 31 mg L–1 and particle mass 0.22 g L–1 previously defined and, in these conditions, degradation percentages between 40 and 85% were observed, with the removal in the Photo/H2O2/Fe3-xO4-y-TiO2 800 °C. The kinetic study performed for this process revealed the process adjusts to the first-order kinetics during the 120 min of reaction. The use of the catalyst can be attractive with the potential for degradation of the studied antimicrobial.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Barancheshme, F.; Munir, M. Development of antibiotic resistance in wastewater treatment plants. In Antimicrobial resistance: A global threat; IntechOpen, 2019; pp 75–91. https://doi.org/10.5772/intechopen.81538
Barret, M.; Carrère, H.; Latrille, E.; Wisniewski, C.; Patureau, D. Micropollutant and sludge characterization for modeling sorption equilibria. Environ. Sci. Technol. 2010, 44 (3), 1100–1106. https://doi.org/10.1021/es902575d
Borges, E.; García, D. M.; Hernández, T.; Ruiz-Morales, J. C.; Esparza, P. Supported photocatalyst for removal of emerging contaminants from wastewater in a continuous packed-bed photoreactor configuration. Catalysts 2015, 5 (1), 77–87. https://doi.org/10.3390/catal5010077
Borges, S. S.; Xavier, L. P. S.; Silva, A. C.; Aquino, S. F. Imobilização de dióxido de titânio em diferentes materiais suporte para o emprego em fotocatálise heterogênea. Quím. Nova 2016, 39 (7), 836–844. https://doi.org/10.5935/0100-4042.20160106
Bound, J. P.; Kitsou, K.; Voulvoulis, N. Household disposal of pharmaceuticals and perception of risk to the environment. Environ. Toxicol. Pharmacol. 2006, 21 (3), 301–307. https://doi.org/10.1016/j.etap.2005.09.006
Carabineiro, S. A. C.; Thavorn-amornsri, T.; Pereira, M. F. R.; Serp, P.; Figueiredo, J. L. Comparison between activated carbon; carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 2012, (1), 29–34. https://doi.org/10.1016/j.cattod.2011.08.020
Carlson, J. C.; Stefan, M. I.; Parnis, J. M.; Metcalfe, C. D. Direct UV photolysis of selected pharmaceuticals, personal care products and endocrine disruptors in aqueous solution. Water Res. 2015, 84, 350–361. https://doi.org/10.1016/j.watres.2015.04.013
Ciccotti, L.; Vale, L. A. S.; Hewer, T. L. R.; Freire, R. S. Fe3O4@TiO2 preparation and catalytic activity in heterogeneous photocatalytic and ozonation processes. Catal. Sci. Technol. 2015, 5 (2), 1143–1152. https://doi.org/10.1039/C4CY01242A
Costa Junior, I. L.; Pletsch, A. L.; Torres, Y. R. Ocorrência de fármacos antidepressivos no meio ambiente: Revisão. Rev. Virtual Quím. 2014, 6 (5), 1408–1431. https://doi.org/10.5935/1984-6835.20140092
Das, R. K.; Kar, J. P.; Mohapatra S. Enhanced photodegradation of organic pollutants by carbon quantum dot (CQD) deposited Fe3O4@mTiO2 nano-pom-pom balls. Ind. Eng. Chem. Res. 2016, 55 (20), 5902–5910. https://doi.org/10.1021/acs.iecr.6b00792
Dorigon, L.; Frota, J. P. R. A.; Kreutz, J. C.; Giona R. M.; Moisés, M. P.; Bail, A. Synthesis and characterization of mesoporous silica-coated magnetite containing cetyltrimethylammonium bromide and evaluation on the adsorption of sodium dodecylbenzenesulfonate. Appl. Surf. Sci. 2017, 420, 954–962. https://doi.org/10.1016/j.apsusc.2017.05.249
Fabbri, D.; López-Muñoz, M. J.; Daniele, A.; Medana, C.; Calza, P. Photocatalytic abatement of emerging pollutants in pure water and wastewater effluent by TiO2 and Ce-ZnO: Degradation kinetics and assessment of transformation products. Photochem. Photobiol. Sci. 2019, 18 (4), 845–852. https://doi.org/10.1039/C8PP00311D
Fioreze, M.; Santos, E. P.; Schmachtenberg, N. Processos oxidativos avançados: Fundamentos e aplicação ambiental. Revista Eletrônica em Gestão; Educação e Tecnologia Ambiental 2014, 18 (1), 79–91. https://doi.org/10.5902/2236117010662
Frade, V. M. F; Dias, M.; Teixeira, A. C. S. C.; Palma, M. S. A. Environmental contamination by fluoroquinolones. Braz. J. Pharm. Sci. 2014, 50 (1), 41–54. https://doi.org/10.1590/S1984-82502011000100004
Halling-Sørensen, B.; Holten Lützhøft, H.-C.; Andersen, H. R.; Ingerslev, F. Environmental risk assessment of antibiotics: Comparison of mecillinam; trimethoprim and ciprofloxacin. J. Antimicrob. Chemother. 2000, 46 (Sippl.1), 53–58. https://doi.org/10.1093/jac/46.suppl_1.53
Hassani, A.; Khataee, A.; Karaca, S. Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A Chem. 2015, 409, 149–161. https://doi.org/10.1016/j.molcata.2015.08.020
Hörsing, M.; Kosjek, T.; Andersen, H. R.; Heath, E.; Ledin, A. Fate of citalopram during water treatment with O3, ClO2, UV and fenton oxidation. Chemosphere 2012, 89 (2), 129–135. https://doi.org/10.1016/j.chemosphere.2012.05.024
Hyland, K. C.; Dickenson, E. R. V.; Drewes, J. E.; Higgins, C. P. Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations. Water Res. 2012, 46 (6), 1958–1968. https://doi.org/10.1016/j.watres.2012.01.012
Karkman, A.; Do, T. T.; Walsh, F.; Virta, M. P. J. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018, 26 (3), 220–228. https://doi.org/10.1016/j.tim.2017.09.005
Khashan, S; Dagher S; Tit N; Alazzam A; Obaidat I. Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles. Surf. Coat. Technol. 2017, 322, 92–98. https://doi.org/10.1016/j.surfcoat.2017.05.045
Leung, H. W.; Minh, T. B.; Murphy, M. B.; Lam, J. C. W.; So, M. K.; Martin, M.; Lam, P. K. S.; Richardson, B. J. Distribution; fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ. Int. 2012, 42, 1–9. https://doi.org/10.1016/j.envint.2011.03.004
Liu, F.; Nielsen, A. H.; Vollertsen, J. Sorption and degradation potential of pharmaceuticals in sediments from a stormwater retention pond. Water 2019, 11 (3), 526. https://doi.org/10.3390/w11030526
Luo, Y.; Guo, W.; Ngo, H. H.; Nghiem, L. D.; Hai, F. I.; Zhang, J.; Liang, S.; Wang, X. C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065
Mourão, H. A. J. L.; Mendonça, V. R; Malagutti, A. R.; Ribeiro, C. Nanoestruturas em fotocatálise: Uma revisão sobre estratégias de síntese de fotocatalisadores em escala nanométrica. Quím. Nova 2009, 32 (8), 2181–2190. https://doi.org/10.1590/S0100-40422009000800032
Nogueira, R. F. P.; Jardim, W. F. A fotocatálise heterogênea e sua aplicação ambiental. Quím. Nova 1998, 21 (1), 69–72. https://doi.org/10.1590/S0100-40421998000100011
Noval, V. E.; Carriazo, J. G. Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Mat. Res. 2019, 22 (3), e20180660. https://doi.org/10.1590/1980-5373-mr-2018-0660
Oliveira, M.; Frihling, B. E. F.; Velasques, J.; Magalhães Filho, F. J. C.; Cavalheri, P. S; Migliolo, L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence; analytical techniques and sustainable alternatives for wastewater treatment. Sci. Total Environ. 2020, 705, 135568. https://doi.org/10.1016/j.scitotenv.2019.135568
Pang, S. C.; Kho, S. Y.; Chin, S. F. Fabrication of magnetite/silica/titania core-shell nanoparticles. J. Nanomater. 2012, 2012, 427310. https://doi.org/10.1155/2012/427310
Piai, L; Blokland, M; van der Wal, A.; Langenhoff, A. Biodegradation and adsorption of micropollutants by biological activated carbon from a drinking water production plant. J. Hazard. Mater. 2020, 388, 122028. https://doi.org/10.1016/j.jhazmat.2020.122028
Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water: A comprehensive review. Resource-Efficient Technologies 2016, 2 (4), 175–184. https://doi.org/10.1016/j.reffit.2016.09.004
Rasalingam, S.; Peng, R.; Koodali, R. T. Removal of hazardous pollutants from wastewaters: Applications of TiO2-SiO2 mixed oxide materials. J. Nanomater. 2014, 2014, 617405. https://doi.org/10.1155/2014/617405
Rogowska, J.; Cieszynska-Semenowicz, M.; Ratajczyk, W.; Wolska, L. Micropollutants in treated wastewater. Ambio 2020, 49, 487–503. https://doi.org/10.1007/s13280-019-01219-5
Sarkar, S.; Chakraborty, S.; Bhattacharjee, C. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR). Ecotoxicol. Environ. Saf. 2015, 121, 263–270. https://doi.org/10.1016/j.ecoenv.2015.02.035
Sim, W.-J.; Lee, J.-W.; Oh, J.-E. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 2010, 158 (5), 1938–1947. https://doi.org/10.1016/j.envpol.2009.10.036
Souza, F. S.; Silva, V. V.; Rosin, C. K.; Hainzenreder, L.; Arenzon, A.; Féris, L. A. Comparison of different advanced oxidation processes for the removal of amoxicillin in aqueous solution. Environ. Technol. 2018, 39 (5), 549–557. https://doi.org/10.1080/09593330.2017.1306116
Teixeira, S.; Mora, H.; Blasse, L.-M.; Martins, P. M.; Carabineiro, S. A. C; Lanceros-Méndez, S.; Kühn, K.; Cuniberti, G. Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles. J. Photochem. Photobiol. A Chem. 2017, 345, 27–35. https://doi.org/10.1016/j.jphotochem.2017.05.024
Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028
Wei, J. H.; Leng, C. J.; Zhang, X. Z.; Li, W. H.; Liu, Z. Y.; Shi, J. Synthesis and magnetorheological effect of Fe3O4-TiO2 nanocomposite. J. Phys.: Conf. Ser. 2009, 149, 012083. https://doi.org/10.1088/1742-6596/149/1/012083
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008, 3, 397. https://doi.org/10.1007/s11671-008-9174-9
Wu, M.-H.; Que, C.-J.; Xu, G.; Sun, Y.-F.; Ma, J.; Xu, H.; Sun, R.; Tang, L. Occurrence; fate and interrelation of selected antibiotics in sewage treatment plants and their receiving surface water. Ecotoxicol. Environ. Saf. 2016, 132, 132–139. https://doi.org/10.1016/j.ecoenv.2016.06.006
Yang, J.; Chen, C.; Ji, H.; Ma, W.; Zhao, J. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: Photoelectrocatalytic study by TiO2-film electrodes. J. Phys. Chem. B 2005, 109 (46), 21900–21907. https://doi.org/10.1021/jp0540914