Ecofriendly and low-cost sample preparation methods for magnesium determination in beer
Main Article Content
Abstract
Ultrasound-assisted extraction and direct analysis were compared with total digestion for magnesium determination in beer samples by flame atomic absorption spectrometry. The method for total digestion used concentrated nitric acid under plate heating. In optimized instrumental conditions, validation of the analytical method was promoted, with good linear range (0.06 to 0.5 mg L–1), low limits of detection and quantification (0.04 and 0.12 µg g–1, respectively), good precision, relative standard deviation (RSD) < 3.4%, and accuracy (recovery levels of 91.5 to 99.0%). The characteristic concentration (C0) was 9 µg L–1. The extraction procedure was performed in a 1:1 nitric acid solution for 55 min in an ultrasonic bath at 60 °C, while the direct analysis involved a dilution of the samples in a 2% v/v nitric acid solution. The different sample preparation methods were applied to 13 beer samples and at a 95% confidence level, no significant differences were observed. Thus, direct analysis proved to be more suitable for quality control routines of beer samples in the industry.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Adolfo, F. R.; do Nascimento, P. C.; Leal, G. C.; Bohrer, D.; Viana, C.; de Carvalho, L. M. Simultaneous determination of Fe and Ni in guarana (Paullinia cupana Kunth) by HR-CS GF AAS: Comparison of direct solid analysis and wet acid digestion procedures. J. Food Compos. Anal. 2020, 88, 103459. https://doi.org/10.1016/j.jfca.2020.103459.
Agência Nacional de Vigilância Sanitária (Anvisa). Resolução RDC nº 166, de 24 de julho de 2017. Dispõe sobre a validação de métodos analíticos e dá outras providências; Ministério da Saúde, 2017.
Akhter, F.; Nag, A.; Alahi, M. E. E.; Liu, H.; Mukhopadhyay, S. C. Electrochemical detection of calcium and magnesium in water bodies. Sens Actuators. A: Phys. 2020, 305, 111949. https://doi.org/10.1016/j.sna.2020.111949.
American Society of Brewing Chemists (ASBC). ASBC Methods of Analysis. https://www.asbcnet.org/methods/pages/default.aspx (accessed 2020-12-01)
Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R. M.; Estruch, R. Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients 2012, 4 (7), 759–781. https://doi.org/10.3390/nu4070759.
Blanco, C. A.; Sancho, D.; Caballero, I. Aluminium content in beers and silicon sequestering effects. Food Res. Int. 2010, 43 (10), 2432–2436. https://doi.org/10.1016/j.foodres.2010.09.017.
Ferreira, B. L.; Chaves, E. S.; Vialich, J.; Sauer, E. Extração assistida por ultrassom para determinação de Fe, K e Na em amostras de achocolatado em pó. Braz. J. Food Technol. 2014, 17 (3), 236–242. https://doi.org/10.1590/1981-6723.1514.
Ferreira, R. H.; Vasconcelos, M. C. R. L.; Judice, V. M. M.; Neves, J. T. R. Inovação na fabricação de cervejas especiais na região de Belo Horizonte. Perspect. Ciênc. Inf. 2011, 16 (4), 171–191. https://doi.org/10.1590/S1413-99362011000400011.
Gaetano, G. de; Costanzo, S.; Di Castelnuovo, A.; Badimon, L.; Bejko, D.; Alkerwi, A.; Chiva-Blanch, G.; Estruch, R.; La Vecchia, C.; Panico, S.; Pounis, G.; Sofi, F.; Stranges, S.; Trevisan, M.; Ursini, F.; Cerletti, C.; Donati, M. B.; Iacoviello, L. Effects of moderate beer consumption on health and disease: A consensus document. Nutr. Metab. Cardiovasc. Dis. 2016, 26 (6), 443–467. https://doi.org/10.1016/j.numecd.2016.03.007.
Ieggli, C. V. S.; Bohrer, D., do Nascimento, P. C.; de Carvalho, L. M.; Garcia, S. C. Determination of sodium, potassium, calcium, magnesium, zinc, and iron in emulsified egg samples by flame atomic absorption spectrometry. Talanta 2010, 80 (3), 1282–1286. https://doi.org/10.1016/j.talanta.2009.09.024.
Ieggli, C. V. S.; Bohrer, D.; do Nascimento, P. C.; de Carvalho, L. M. Determination of sodium, potassium, calcium, magnesium, zinc and iron in emulsified chocolate samples by flame atomic absorption spectrometry. Food Chem. 2011, 124 (3), 1189–1193. https://doi.org/10.1016/j.foodchem.2010.07.043.
Khajeh, M.; Sanchooli, E. Optimization of Microwave-Assisted Extraction Procedure for Zinc and Iron Determination in Celery by Box–Behnken Design. Food Anal. Methods 3 2010, 75–79. https://doi.org/10.1007/s12161-009-9086-z.
Kishimoto, T.; Teramoto, S.; Fujita, A.; Yamada, O. Principal Component Analysis of Hop-Derived Odorants Identified by Stir Bar Sorptive Extraction Method. J. Am. Soc. Brew. Chem. 2020, 1–9. https://doi.org/10.1080/03610470.2020.1843926.
Leão, P. R. P. de; Medina, A. L.; Vieira, M. A.; Ribeiro, A. S. Decomposição de amostras de cerveja com sistema de refluxo para determinação monoelementar por F AAS/AES e determinação multielementar por MIP OES. Braz. J. Food Technol. 2018, 21, e2017062. https://doi.org/10.1590/1981-6723.6217.
Lordan, R.; O’Keeffe, E.; Dowling, D.; Mullally, M.; Heffernan, H.; Tsoupras, A.; Zabetakis, I. The in vitro antithrombotic properties of ale, lager, and stout beers. Food Biosci. 2019, 28, 83–88. https://doi.org/10.1016/j.fbio.2019.01.012.
Marcano, E.; Gómez, C.; Benzo, Z.; Laine, J. Estudio preliminar sobre la determinación de elementos traza en cervezas venezolanas por ICP-OES. Quím. Nova 2010, 33 (3), 653–655. https://doi.org/10.1590/S0100-40422010000300032.
Mimura, A. M. S.; Oliveira, M. A. L.; Ciminelli, V. S. T.; Silva, J. C. J. Optimization of Ultrasound-Assisted Extraction of Cr, Cu, Zn, Cd, and Pb from Sediment, Followed by FAAS and GFAAS Analysis. J. AOAC Int. 2016, 99 (1), 252–259. https://doi.org/10.5740/jaoacint.15-0090.
Mketo, N.; Nomngongo, P. N.; Ngila, J. C. An overview on analytical methods for quantitative determination of multi-element in coal samples. TrAC Trends Analyt. Chem. 2016, 85 (Part C), 107–116. https://doi.org/10.1016/j.trac.2016.09.002.
Moreda-Piñeiro, J.; Sánchez-Piñero, J.; Mañana-López, A.; Turnes-Carou, I.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S. Multi-element determinations in foods from Amazon region by ICP-MS after enzymatic hydrolysis assisted by pressurisation and microwave energy. Microchem. J. 2018, 137, 402–409. https://doi.org/10.1016/j.microc.2017.11.018.
Oliveira, T. M. de; Peres, J. A., Felsner, M. L., Justi, K. C. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries. Food Chem. 2017, 229, 721–725. https://doi.org/10.1016/j.foodchem.2017.02.143.
Omari, I. O.; Charnock, H. M.; Fugina, A. L.; Thomson, E. L.; McIndoe, J. S. Magnesium-Accelerated Maillard Reactions Drive Differences in Adjunct and All-Malt Brewing. J. Am. Soc. Brew. Chem. 2020, 79 (2), 145–155. https://doi.org/10.1080/03610470.2020.1795437.
Pai, T. V.; Sawant, S. Y.; Ghatak, A. A.; Chaturvedi, P. A.; Gupte, A. M.; Desai, N. S. Characterization of Indian beers: chemical composition and antioxidant potential. J. Food Sci. Technol. 2015 52 (3), 1414–1423. https://doi.org/10.1007/s13197-013-1152-2.
Paull, B.; Macka, M.; Haddad, P. R. Determination of calcium and magnesium in water samples by high-performance liquid chromatography on a graphitic stationary phase with a mobile phase containing o-cresolphthalein complexone. J. Chromatogr. A 1997, 789 (1–2), 329–337. https://doi.org/10.1016/S0021-9673(97)00660-2.
Pohl, P.; Sergiel, I. Direct determination of the total concentrations of copper, iron and manganese and their fractionation forms in freshly ripened honeys by means of flame atomic absorption spectrometry. Microchim. Acta 2010, 168, 9–15. https://doi.org/10.1007/s00604-009-0266-8.
Rosa, N. A.; Afonso, J. C. A Química da Cerveja. Quím. Nova Esc. 2015, 37 (2), 98–105. https://doi.org/10.5935/0104-8899.20150030.
Rosanoff, A. The high heart health value of drinking-water magnesium. Med. Hypotheses 2013, 81 (6), 1063–1065. https://doi.org/10.1016/j.mehy.2013.10.003.
Sako, A. V. F.; Spudeit, D. A.; Dupim, M.; Filho, W. P. O.; Saint’Pierre, T. D.; de Oliveira, M. A. L.; Micke, G. A. Dual-opposite end multiple injection method applied to sequential determination of Na+, K+, Ca+2, Mg+2 ions and free and total glycerol in biodiesel by capillary zone electrophoresis. J. Chromatogr. A 2018, 1570, 148–154. https://doi.org/10.1016/j.chroma.2018.07.079.
Sampaolesi, S.; Gamba, R. R.; De Antoni, G. L.; León Peláez, Á. M. Potentiality of yeasts obtained as beer fermentation residue to be used as probiotics. LWT 2019, 113, 108251. https://doi.org/10.1016/j.lwt.2019.108251.
Santos, J. M. dos; de Andrade, J. K.; Galvão, F.; Felsner, M. L. Optimization and validation of ultrasound-assisted extraction for the determination of micro and macro minerals in non-centrifugal sugar by F AAS. Food Chem. 2019, 292, 66–74. https://doi.org/10.1016/j.foodchem.2019.04.037.
Santos, J. M. dos; Quináia, S. P.; Felsner, M. L. Fast and direct analysis of Cr, Cd and Pb in brown sugar by GF AAS. Food Chem. 2018, 260, 19–26. https://doi.org/10.1016/j.foodchem.2018.03.106.
Seeger, T. S.; Muller, E. I.; Mesko, M. F.; Duarte, F. A. Magnesium and calcium determination in desalted crude oil by direct sampling graphite furnace atomic absorption spectrometry. Fuel 2019, 236, 1483–1488. https://doi.org/10.1016/j.fuel.2018.09.108.
Shishov, A.; Trufanov, I.; Nechaeva, D.; Bulatov, A. A reversed-phase air-assisted dispersive liquid-liquid microextraction coupled with colorimetric paper-based analytical device for the determination of glycerol, calcium and magnesium in biodiesel samples. Microchem. J. 2019, 150, 104134. https://doi.org/10.1016/j.microc.2019.104134.
Sleiman, M.; Venturini Filho, W. G.; Ducatti, C.; Nojimoto, T. Determinação do percentual de malte e adjuntos em cervejas comerciais brasileiras através de análise isotópica. Ciênc. Agrotec. 2010, 34 (1), 163–172. https://doi.org/10.1590/S1413-70542010000100021.
Souza, S. O.; Costa, S. S. L.; Brum, B. C. T.; Santos, S. H.; Garcia, C. A. B.; Araujo, R. G. O. Determination of nutrients in sugarcane juice using slurry sampling and detection by ICP OES. Food Chem. 2019, 273, 57–63. https://doi.org/10.1016/j.foodchem.2018.03.060.
Styburski, D.; Janda, K.; Baranowska-Bosiacka, I.; Łukomska, A.; Dec, K., Goschorska, M.; Michalkiewicz, B.; Ziętek, P.; Gutowska, I. Beer as a potential source of macroelements in a diet: the analysis of calcium, chlorine, potassium, and phosphorus content in a popular low-alcoholic drink. Eur. Food Res. Technol. 2018, 244, 1853–1860. https://doi.org/10.1007/s00217-018-3098-0.
Szymczycha-Madeja, A.; Welna, M.; Pohl, P. Determination of Elements in Energy Drinks by ICP OES with Minimal Sample Preparation. J. Braz. Chem. Soc. 2013, 24 (10), 1606–1612. https://doi.org/10.5935/0103-5053.20130202.
Welna, M.; Szymczycha-Madeja, A.; Pohl, P. Improvement of Determination of Trace Amounts of Arsenic and Selenium in Slim Coffee Products by HG-ICP-OES. Food Anal. Methods 2014, 7, 1016–1023. https://doi.org/10.1007/s12161-013-9707-4.
Welz, B.; Sperling, M. Atomic Absorption Spectrometry; Wiley-VCH, Weinheim, 1999. https://doi.org/10.1002/9783527611690.
Wietstock, P. C.; Kunz, T.; Waterkamp, H.; Methner, F. J. Uptake and Release of Ca, Cu, Fe, Mg, and Zn during Beer Production. J. Am. Soc. Brew. Chem. 2015, 73 (2), 179–184. https://doi.org/10.1094/ASBCJ-2015-0402-01.