Effect of the deformation parameter on the nonrelativistic energy spectra of the q-deformed Hulthen-quadratic exponential-type potential

Main Article Content

Ushie Patrick Obogo
Ofem Egbe Ubi
Collins Okon Edet
Akpan Ndem Ikot

Abstract

In this study, an approximate solution of the Schrödinger equation for the q-deformed Hulthen-quadratic exponential-type potential model within the framework of the Nikiforov–Uvarov method was obtained. The bound state energy equation and the corresponding eigenfunction was obtained. The energy spectrum is applied to study H2, HCl, CO and LiH diatomic molecules. The effect of the deformation parameters and other potential parameters on the energy spectra of the system were graphically and numerically analyzed in detail. Special cases were considered when the  potential parameters were altered, resulting in deformed Hulthen potential, Hulthen potential, deformed quadratic exponential-type potential and quadratic exponential-type potential. The energy eigenvalues expressions agreed with what obtained in literature. Finally, the results can find many applications in quantum chemistry, atomic and molecular physics.

Metrics

Metrics Loading ...

Article Details

How to Cite
Obogo, U. P., Ubi, O. E., Edet, C. O., & Ikot, A. N. (2021). Effect of the deformation parameter on the nonrelativistic energy spectra of the q-deformed Hulthen-quadratic exponential-type potential. Eclética Química, 46(4), 60–73. https://doi.org/10.26850/1678-4618eqj.v46.4.2021.p60-73
Section
Original articles

References

Agboola, D. The Hulthén potential in D-dimensions. Phys. Scr. 2009, 80 (6), 065304. https://doi.org/10.1088/0031-8949/80/06/065304

Bayrak, O.; Kocak, G.; Boztosun, I. Any l-state solutions of the Hulthén potential by the asymptotic iteration method. J. Phys. A: Math. Gen. 2006, 39 (37), 11521. https://doi.org/10.1088/0305-4470/39/37/012

Ciftci, H.; Hall, R. L.; Saad, N. Asymptotic iteration method for eigenvalue problems. J. Phys. A: Math. Gen. 2003, 36 (47), 11807. https://doi.org/10.1088/0305-4470/36/47/008

Ciftci, H.; Hall, R. L.; Saad, N. Perturbation theory in a framework of iteration methods. Phys. Lett. A 2005, 340 (5–6), 388–396. https://doi.org/10.1016/j.physleta.2005.04.030

Dong, S.-H. Factorization method in quantum mechanics; Springer, 2007.

Durmus, A.; Yasuk, F. Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shaped Kratzer potential. J. Chem. Phys 2007, 126, 074108. https://doi.org/10.1063/1.2566432

Ebomwonyi, O.; Onate, C. A.; Onyeaju, M. C.; Ikot, A. N. Any ℓ−states solutions of the Schrödinger equation interacting with Hellmann-generalized Morse potential model. Karbala Intl. J. Mod. Sci. 2017, 3 (1), 59–68. https://doi.org/10.1016/j.kijoms.2017.03.001

Edet, C. O.; Okoi, P. O. Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions. Rev. Mex. Fis. 2019, 65 (4), 333–344. https://doi.org/10.31349/RevMexFis.65.333

Edet, C. O.; Okoi, P. O.; Chima S. O. Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential. Rev. Bras. Ensino Fís. 2020a, 42, e20190083. https://doi.org/10.1590/1806-9126-rbef-2019-0083

Edet, C. O., Okorie, U. S., Ngiangia, A. T., Ikot, A. N. Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian J. Phys. 2020b, 94, 425–433. https://doi.org/10.1007/s12648-019-01477-9

Edet, C. O.; Amadi, P. O.; Okorie, U. S.; Tas, A.; Ikot, A. N.; Rampho, G. Solutions of Schrodinger equation and thermal properties of generalized trigonometric Poschl-Teller potential. Rev. Mex. Fis. 2020c, 66 (6). https://doi.org/10.31349/RevMexFis.66.824

Edet, C. O.; Okorie, K. O.; Louis, H.; Nzeata-Ibe, N. A. Any l-state solutions of the Schrodinger equation interacting with Hellmann–Kratzer potential model. Indian J. Phys. 2020d, 94, 243–251. https://doi.org/10.1007/s12648-019-01467-x

Edet, C. O.; Okorie, U. S.; Osobonye, G.; Ikot, A. N.; Rampho, G. J.; Sever, R. Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach. J. Math. Chem. 2020e, 58, 989–1013. https://doi.org/10.1007/s10910-020-01107-4

Edet C. O.; Amadi, P. O.; Onyeaju, M. C.; Okorie, U. S.; Sever, R.; Rampho, G. J.; Abdullah, H. Y.; Salih, I. H.; Ikot, A. N. Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures. J. Low Temp. Phys. 2021a, 202, 83–105. https://doi.org/10.1007/s10909-020-02533-z

Edet, C. O.; Ikot, A. N.; Onyeaju, M. C.; Okorie, U. S.; Rampho, G. J.; Lekala, M. L.; Kaya, S. Thermo-magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm(AB) and position-dependent magnetic fields. Physica E. 2021b, 131, 114710. https://doi.org/10.1016/j.physe.2021.114710

Falaye, B. J. Any ℓ-state solutions of the Eckart potential via asymptotic iteration method. Cent. Eur. Phys. 2012, 10 (4), 960–965. https://doi.org/10.2478/s11534-012-0047-6

Falaye, B. J.; Oyewumi, K. J.; Ikhdair, S. M.; Hamzavi, M. Eigensolution techniques, their applications and Fisherʼs information entropy of the Tietz–Wei diatomic molecular model. Phys. Scr. 2014, 89 (11), 115204. https://doi.org/10.1088/0031-8949/89/11/115204

Falaye, B. J.; Ikhdair, S. M.; Hamzavi, M. Energy States of Some Diatomaic Molecules: The Exact Quantisation Rule Approach. Zeitschrift für Naturforschung A 2015a, 70 (2), 85–90. https://doi.org/10.1515/zna-2014-0232

Falaye, B. J.; Ikhdair, S. M.; Hamzavi, M. Formula Method for Bound State Problems. Few-Body Syst. 2015b, 56, 63–78. https://doi.org/10.1007/s00601-014-0937-9

Greene, R. L.; Aldrich, C. Variational wave functions for a screened Coulomb potential. Phys. Rev. A 1976, 14 (6), 2363. https://doi.org/10.1103/PhysRevA.14.2363

Greiner W. Relativistic Quantum Mechanics: Wave equations; Springer, 2000. https://doi.org/10.1007/978-3-662-04275-5

Gu, X.-Y.; Dong, S.-H. Energy spectrum of the Manning-Rosen potential including centrifugal term solved by exact and proper quantization rules. J. Math. Chem. 2011, 49, 2053. https://doi.org/10.1007/s10910-011-9877-5

Hall, R. L.; Saad, N.; Sen, K. D. Exact normalized eigenfunctions for general deformed Hulthén potentials. J. Math. Phys. 2018, 59, 122103. https://doi.org/10.1063/1.5043484

Ikhdair, S. M. An improved approximation scheme for the centrifugal term and the Hulthén potential. Eur. Phys. J. A 2009, 39, 307–314. https://doi.org/10.1140/epja/i2008-10715-2

Ikhdair, S. M.; Sever, R. Approximate Eigenvalue and Eigenfunction Solutions for the Generalized Hulthén Potential with any Angular Momentum. J. Math. Chem. 2007, 42, 461–471. https://doi.org/10.1007/s10910-006-9115-8

Ikot, A. N.; Awoga, O. A.; Hassanabadi, H.; Maghsoodi, E. Analytical approximate solution of Schrödinger equation in D dimensions with quadratic exponential-type potential for arbitrary l-State. Commun. Theor. Phys. 2014, 61 (4), 457. https://doi.org/10.1088/0253-6102/61/4/09

Ikot A. N.; Edet, C. O.; Amadi, P. O.; Okorie, U. S.; Rampho, G. J.; Abdullah, H. Y. Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential. Eur. Phys. J. D 2020a, 74, 159. https://doi.org/10.1140/epjd/e2020-10084-9

Ikot, A. N.; Okorie U. S.; Osobonye G.; Amadi P. O.; Edet C. O.; Sithole M. J.; Rampho G. J.; Sever R. Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields. Heliyon 2020b, 6 (4), e03738. https://doi.org/10.1016/j.heliyon.2020.e03738

Ita, B. I.; Louis, H.; Akakuru, O. U.; Nzeata-Ibe, N. A.; Ikeuba A. I.; Magu, T. O.; Amos, P. I.; Edet, C. O. Approximate Solution to the Schrödinger Equation with Manning- Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method. Bulg. J. Phys. 2018, 45, 323–333.

Jia, C.-S.; Liu, J.-Y.; Wang, P.-Q. A new approximation scheme for the centrifugal term and the Hulthén potential. Phys. Lett. A 2008, 372 (27–28), 4779–4782. https://doi.org/10.1016/j.physleta.2008.05.030

Landau, L. D.; Lifshitz E. M. Quantum Mechanics: Non-relativistic Theory; Pergamon, 1977.

Louis, H.; Iserom, I. B.; Akakuru, O. U.; Nzeata-Ibe, N. A.; Ikeuba, A. I.; Magu, T. O.; Amos, P. I.; Collins, E. O. l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism. Orient. J. Phys. Sciences 2018a, 3 (1).

Louis H.; Ita B. I.; Magu T. O.; Akakuru U. O.; Nzeata-Ibe, N.; Ikeuba I. A.; Amos I. P.; Edet C. O. Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and Coulomb-Like Tensor Interaction Using Nikiforov-Uvarov Method. Int. J. Chem. 2018b, 10 (3), 99–106. https://doi.org/10.5539/ijc.v10n3p99

Ma, Z.-Q.; Xu, B.-W. Quantum correction in exact quantization rules. EPL (Europhysics Letters) 2005, 69 (5), 685. https://doi.org/10.1209/epl/i2004-10418-8

Nikiforov, A. F.; Uvarov, V. B. Special Functions of Mathematical Physics; Birkhäuser Verlag Basel, 1988.

Okoi, P. O.; Edet C. O.; Magu T. O. Relativistic treatment of the Hellmann-generalized Morse potential. Rev. Mex. Fis. 2020, 66 (1), 1–13. https://doi.org/10.31349/RevMexFis.66.1

Okorie, U. S.; Ikot, A. N.; Onyeaju, M. C.; Chukwuocha, E. O. A study of thermodynamic properties of quadratic exponential-type potential in D-dimensions. Rev. Mex. Fis. 2018, 64 (6), 608–614. https://doi.org/10.31349/RevMexFis.64.608

Okorie U. S.; Ikot A. N.; Edet C. O.; Rampho, G. J.; Server, R.; Akpan I. O. Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions. J. Phys. Commun. 2019, 3 (9), 095015. https://doi.org/10.1088/2399-6528/ab42c6

Okorie U. S.; Edet C. O.; Ikot A. N.; Rampho G. J.; Sever R., Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. Indian J. Phys. 2020, 95, 411–421. https://doi.org/10.1007/s12648-019-01670-w

Onate, C. A.; Onyeaju, M. C.; Ikot, A. N.; Ojonubah J. O. Eigen solutions, Shannon entropy and fisher information under the Eckart Manning Rosen potential model. J. Korean Phys. Soc. 2017, 70, 339–347. https://doi.org/10.3938/jkps.70.339

Onate, C. A.; Adebimpe, O.; Adebesin, B. O; Lukman, A. F. Information-theoretic measure of the hyperbolical exponential-type potential. Turk. J. Phys. 2018a, 42 (4), 402–414. https://doi.org/10.3906/fiz-1802-40

Onate, C. A.; Adebimpe, O.; Lukman, A. F.; Adama, I. J.; Okoro, J. O.; Davids, E. O. Approximate eigensolutions of the attractive potential via parametric Nikiforov-Uvarov method. Heliyon 2018b, 4 (11), e00977. https://doi.org/10.1016/j.heliyon.2018.e00977

Onate, C. A.; Ikot, A. N.; Onyeaju, M. C.; Ebomwonyi, O.; Idiodi, J. O. A. Effect of dissociation energy on Shannon and Rényi entropies. Karbala Int. J. Mod. Sci. 2018c, 4 (1), 134–142. https://doi.org/10.1016/j.kijoms.2017.12.004

Qiang, W.-C.; Dong, S.-H. Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method. Phys. Lett. A 2007, 363 (3), 169–176. https://doi.org/10.1016/j.physleta.2006.10.091

Rampho, G. J.; Ikot A. N.; Edet C. O.; Okorie U. S. Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. Mol. Phys. 2021, 119 (5), e1821922. https://doi.org/10.1080/00268976.2020.1821922

Schiff L. I. Quantum Mechanics; McGraw Hill, 1995.

Tezcan, C.; Sever, R. A general approach for the exact solution of the Schrödinger equation. Intl. J. Theor. Phys. 2009, 48, 337–350. https://doi.org/10.1007/s10773-008-9806-y