Effect of the deformation parameter on the nonrelativistic energy spectra of the q-deformed Hulthen-quadratic exponential-type potential
Main Article Content
Abstract
In this study, an approximate solution of the Schrödinger equation for the q-deformed Hulthen-quadratic exponential-type potential model within the framework of the Nikiforov–Uvarov method was obtained. The bound state energy equation and the corresponding eigenfunction was obtained. The energy spectrum is applied to study H2, HCl, CO and LiH diatomic molecules. The effect of the deformation parameters and other potential parameters on the energy spectra of the system were graphically and numerically analyzed in detail. Special cases were considered when the potential parameters were altered, resulting in deformed Hulthen potential, Hulthen potential, deformed quadratic exponential-type potential and quadratic exponential-type potential. The energy eigenvalues expressions agreed with what obtained in literature. Finally, the results can find many applications in quantum chemistry, atomic and molecular physics.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Agboola, D. The Hulthén potential in D-dimensions. Phys. Scr. 2009, 80 (6), 065304. https://doi.org/10.1088/0031-8949/80/06/065304
Bayrak, O.; Kocak, G.; Boztosun, I. Any l-state solutions of the Hulthén potential by the asymptotic iteration method. J. Phys. A: Math. Gen. 2006, 39 (37), 11521. https://doi.org/10.1088/0305-4470/39/37/012
Ciftci, H.; Hall, R. L.; Saad, N. Asymptotic iteration method for eigenvalue problems. J. Phys. A: Math. Gen. 2003, 36 (47), 11807. https://doi.org/10.1088/0305-4470/36/47/008
Ciftci, H.; Hall, R. L.; Saad, N. Perturbation theory in a framework of iteration methods. Phys. Lett. A 2005, 340 (5–6), 388–396. https://doi.org/10.1016/j.physleta.2005.04.030
Dong, S.-H. Factorization method in quantum mechanics; Springer, 2007.
Durmus, A.; Yasuk, F. Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shaped Kratzer potential. J. Chem. Phys 2007, 126, 074108. https://doi.org/10.1063/1.2566432
Ebomwonyi, O.; Onate, C. A.; Onyeaju, M. C.; Ikot, A. N. Any ℓ−states solutions of the Schrödinger equation interacting with Hellmann-generalized Morse potential model. Karbala Intl. J. Mod. Sci. 2017, 3 (1), 59–68. https://doi.org/10.1016/j.kijoms.2017.03.001
Edet, C. O.; Okoi, P. O. Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions. Rev. Mex. Fis. 2019, 65 (4), 333–344. https://doi.org/10.31349/RevMexFis.65.333
Edet, C. O.; Okoi, P. O.; Chima S. O. Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential. Rev. Bras. Ensino Fís. 2020a, 42, e20190083. https://doi.org/10.1590/1806-9126-rbef-2019-0083
Edet, C. O., Okorie, U. S., Ngiangia, A. T., Ikot, A. N. Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian J. Phys. 2020b, 94, 425–433. https://doi.org/10.1007/s12648-019-01477-9
Edet, C. O.; Amadi, P. O.; Okorie, U. S.; Tas, A.; Ikot, A. N.; Rampho, G. Solutions of Schrodinger equation and thermal properties of generalized trigonometric Poschl-Teller potential. Rev. Mex. Fis. 2020c, 66 (6). https://doi.org/10.31349/RevMexFis.66.824
Edet, C. O.; Okorie, K. O.; Louis, H.; Nzeata-Ibe, N. A. Any l-state solutions of the Schrodinger equation interacting with Hellmann–Kratzer potential model. Indian J. Phys. 2020d, 94, 243–251. https://doi.org/10.1007/s12648-019-01467-x
Edet, C. O.; Okorie, U. S.; Osobonye, G.; Ikot, A. N.; Rampho, G. J.; Sever, R. Thermal properties of Deng–Fan–Eckart potential model using Poisson summation approach. J. Math. Chem. 2020e, 58, 989–1013. https://doi.org/10.1007/s10910-020-01107-4
Edet C. O.; Amadi, P. O.; Onyeaju, M. C.; Okorie, U. S.; Sever, R.; Rampho, G. J.; Abdullah, H. Y.; Salih, I. H.; Ikot, A. N. Thermal Properties and Magnetic Susceptibility of Hellmann Potential in Aharonov–Bohm (AB) Flux and Magnetic Fields at Zero and Finite Temperatures. J. Low Temp. Phys. 2021a, 202, 83–105. https://doi.org/10.1007/s10909-020-02533-z
Edet, C. O.; Ikot, A. N.; Onyeaju, M. C.; Okorie, U. S.; Rampho, G. J.; Lekala, M. L.; Kaya, S. Thermo-magnetic properties of the screened Kratzer potential with spatially varying mass under the influence of Aharanov-Bohm(AB) and position-dependent magnetic fields. Physica E. 2021b, 131, 114710. https://doi.org/10.1016/j.physe.2021.114710
Falaye, B. J. Any ℓ-state solutions of the Eckart potential via asymptotic iteration method. Cent. Eur. Phys. 2012, 10 (4), 960–965. https://doi.org/10.2478/s11534-012-0047-6
Falaye, B. J.; Oyewumi, K. J.; Ikhdair, S. M.; Hamzavi, M. Eigensolution techniques, their applications and Fisherʼs information entropy of the Tietz–Wei diatomic molecular model. Phys. Scr. 2014, 89 (11), 115204. https://doi.org/10.1088/0031-8949/89/11/115204
Falaye, B. J.; Ikhdair, S. M.; Hamzavi, M. Energy States of Some Diatomaic Molecules: The Exact Quantisation Rule Approach. Zeitschrift für Naturforschung A 2015a, 70 (2), 85–90. https://doi.org/10.1515/zna-2014-0232
Falaye, B. J.; Ikhdair, S. M.; Hamzavi, M. Formula Method for Bound State Problems. Few-Body Syst. 2015b, 56, 63–78. https://doi.org/10.1007/s00601-014-0937-9
Greene, R. L.; Aldrich, C. Variational wave functions for a screened Coulomb potential. Phys. Rev. A 1976, 14 (6), 2363. https://doi.org/10.1103/PhysRevA.14.2363
Greiner W. Relativistic Quantum Mechanics: Wave equations; Springer, 2000. https://doi.org/10.1007/978-3-662-04275-5
Gu, X.-Y.; Dong, S.-H. Energy spectrum of the Manning-Rosen potential including centrifugal term solved by exact and proper quantization rules. J. Math. Chem. 2011, 49, 2053. https://doi.org/10.1007/s10910-011-9877-5
Hall, R. L.; Saad, N.; Sen, K. D. Exact normalized eigenfunctions for general deformed Hulthén potentials. J. Math. Phys. 2018, 59, 122103. https://doi.org/10.1063/1.5043484
Ikhdair, S. M. An improved approximation scheme for the centrifugal term and the Hulthén potential. Eur. Phys. J. A 2009, 39, 307–314. https://doi.org/10.1140/epja/i2008-10715-2
Ikhdair, S. M.; Sever, R. Approximate Eigenvalue and Eigenfunction Solutions for the Generalized Hulthén Potential with any Angular Momentum. J. Math. Chem. 2007, 42, 461–471. https://doi.org/10.1007/s10910-006-9115-8
Ikot, A. N.; Awoga, O. A.; Hassanabadi, H.; Maghsoodi, E. Analytical approximate solution of Schrödinger equation in D dimensions with quadratic exponential-type potential for arbitrary l-State. Commun. Theor. Phys. 2014, 61 (4), 457. https://doi.org/10.1088/0253-6102/61/4/09
Ikot A. N.; Edet, C. O.; Amadi, P. O.; Okorie, U. S.; Rampho, G. J.; Abdullah, H. Y. Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential. Eur. Phys. J. D 2020a, 74, 159. https://doi.org/10.1140/epjd/e2020-10084-9
Ikot, A. N.; Okorie U. S.; Osobonye G.; Amadi P. O.; Edet C. O.; Sithole M. J.; Rampho G. J.; Sever R. Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields. Heliyon 2020b, 6 (4), e03738. https://doi.org/10.1016/j.heliyon.2020.e03738
Ita, B. I.; Louis, H.; Akakuru, O. U.; Nzeata-Ibe, N. A.; Ikeuba A. I.; Magu, T. O.; Amos, P. I.; Edet, C. O. Approximate Solution to the Schrödinger Equation with Manning- Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method. Bulg. J. Phys. 2018, 45, 323–333.
Jia, C.-S.; Liu, J.-Y.; Wang, P.-Q. A new approximation scheme for the centrifugal term and the Hulthén potential. Phys. Lett. A 2008, 372 (27–28), 4779–4782. https://doi.org/10.1016/j.physleta.2008.05.030
Landau, L. D.; Lifshitz E. M. Quantum Mechanics: Non-relativistic Theory; Pergamon, 1977.
Louis, H.; Iserom, I. B.; Akakuru, O. U.; Nzeata-Ibe, N. A.; Ikeuba, A. I.; Magu, T. O.; Amos, P. I.; Collins, E. O. l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism. Orient. J. Phys. Sciences 2018a, 3 (1).
Louis H.; Ita B. I.; Magu T. O.; Akakuru U. O.; Nzeata-Ibe, N.; Ikeuba I. A.; Amos I. P.; Edet C. O. Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and Coulomb-Like Tensor Interaction Using Nikiforov-Uvarov Method. Int. J. Chem. 2018b, 10 (3), 99–106. https://doi.org/10.5539/ijc.v10n3p99
Ma, Z.-Q.; Xu, B.-W. Quantum correction in exact quantization rules. EPL (Europhysics Letters) 2005, 69 (5), 685. https://doi.org/10.1209/epl/i2004-10418-8
Nikiforov, A. F.; Uvarov, V. B. Special Functions of Mathematical Physics; Birkhäuser Verlag Basel, 1988.
Okoi, P. O.; Edet C. O.; Magu T. O. Relativistic treatment of the Hellmann-generalized Morse potential. Rev. Mex. Fis. 2020, 66 (1), 1–13. https://doi.org/10.31349/RevMexFis.66.1
Okorie, U. S.; Ikot, A. N.; Onyeaju, M. C.; Chukwuocha, E. O. A study of thermodynamic properties of quadratic exponential-type potential in D-dimensions. Rev. Mex. Fis. 2018, 64 (6), 608–614. https://doi.org/10.31349/RevMexFis.64.608
Okorie U. S.; Ikot A. N.; Edet C. O.; Rampho, G. J.; Server, R.; Akpan I. O. Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions. J. Phys. Commun. 2019, 3 (9), 095015. https://doi.org/10.1088/2399-6528/ab42c6
Okorie U. S.; Edet C. O.; Ikot A. N.; Rampho G. J.; Sever R., Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. Indian J. Phys. 2020, 95, 411–421. https://doi.org/10.1007/s12648-019-01670-w
Onate, C. A.; Onyeaju, M. C.; Ikot, A. N.; Ojonubah J. O. Eigen solutions, Shannon entropy and fisher information under the Eckart Manning Rosen potential model. J. Korean Phys. Soc. 2017, 70, 339–347. https://doi.org/10.3938/jkps.70.339
Onate, C. A.; Adebimpe, O.; Adebesin, B. O; Lukman, A. F. Information-theoretic measure of the hyperbolical exponential-type potential. Turk. J. Phys. 2018a, 42 (4), 402–414. https://doi.org/10.3906/fiz-1802-40
Onate, C. A.; Adebimpe, O.; Lukman, A. F.; Adama, I. J.; Okoro, J. O.; Davids, E. O. Approximate eigensolutions of the attractive potential via parametric Nikiforov-Uvarov method. Heliyon 2018b, 4 (11), e00977. https://doi.org/10.1016/j.heliyon.2018.e00977
Onate, C. A.; Ikot, A. N.; Onyeaju, M. C.; Ebomwonyi, O.; Idiodi, J. O. A. Effect of dissociation energy on Shannon and Rényi entropies. Karbala Int. J. Mod. Sci. 2018c, 4 (1), 134–142. https://doi.org/10.1016/j.kijoms.2017.12.004
Qiang, W.-C.; Dong, S.-H. Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method. Phys. Lett. A 2007, 363 (3), 169–176. https://doi.org/10.1016/j.physleta.2006.10.091
Rampho, G. J.; Ikot A. N.; Edet C. O.; Okorie U. S. Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential. Mol. Phys. 2021, 119 (5), e1821922. https://doi.org/10.1080/00268976.2020.1821922
Schiff L. I. Quantum Mechanics; McGraw Hill, 1995.
Tezcan, C.; Sever, R. A general approach for the exact solution of the Schrödinger equation. Intl. J. Theor. Phys. 2009, 48, 337–350. https://doi.org/10.1007/s10773-008-9806-y