Biofuel from hydrocracking of Cerbera manghas oil over Ni-Zn/HZSM-5 catalyst
Main Article Content
Abstract
The effects of reaction temperature on the hydrocarbon composition of biofuel produced in hydrocracking of Cerbera manghas oil with Ni-Zn/HZSM-5 catalyst were investigated. The incipient wetness impregnation method was applied to prepare the Ni-Zn/HZSM-5 catalysts. Furthermore, the properties of catalysts were measured by X-ray diffraction, atomic absorption spectrometry, and nitrogen physisorption. Hydrocracking process was carried out in Parr USA pressure batch reactor at pressure of 20 ± 5 bar after flowing H2 for 1 h. The reaction with a catalyst/oil ratio of 1 g/150 mL proceeded at various temperatures of 350, 375 and 400 °C for 2 h. Gas chromatography-mass spectrometry was used to analyze biofuel. The most abundant hydrocarbon compounds in biofuel were identified as pentadecane and heptadecane (a major diesel fuel compound) with a different amount at different reaction temperatures. It can be said that the hydrodecarboxylation/decarbonylation routes were the predominant reaction pathways and oxygen removal occurred during hydrocracking. The Cerbera manghas oil can be recommended as a promising biofeed to produce the gasoil as an alternative transportation fuel.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Arun, N.; Sharma, R. V.; Dalai, A. K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renew. Sustain. Energy Rev. 2015, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074
Ayodele, O. B.; Farouk, H. U.; Mohammed, J.; Uemura, Y.; Daud W. M. A. W. Hydrodeoxygenation of oleic acid into n- and iso-paraffin biofuel using zeolite supported fluor-oxalate modified molybdenum catalyst: Kinetics study. J. Taiwan Inst. Chem. Eng. 2015, 50, 142–152. https://doi.org/10.1016/j.jtice.2014.12.014
Barrón, C. A. E.; Melo-Banda, J. A.; Dominguez, J. M. E.; Hernández, M. E.; Silva, R. R.; Reyes, T. A. I.; Meraz, M. M. A. Catalytic hydrocracking of vegetable oil for agrofuels production using Ni–Mo, Ni–W, Pt and TFA catalysts supported on SBA-15. Catal. Today 2011, 166 (1), 102–110. https://doi.org/10.1016/j.cattod.2011.01.026
Bezergianni, S.; Dimitriadis, A.; Meletidis, G. Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil–waste cooking oil mixtures. Fuel 2014, 125, 129–136. https://doi.org/10.1016/j.fuel.2014.02.010
Bockisch, M. Fats and Oils Handbook; AOCS Press, 1998. https://doi.org/10.1016/B978-0-9818936-0-0.50003-2
Budianto, A.; Prajitno, D. H.; Budhikarjono, K. Biofuel production from candlenut oil using catalytic cracking process with Zn/HZSM-5 catalyst. ARPN J. Eng. Appl. Sci. 2014a, 9 (11), 2121–2124.
Budianto, A.; Danawati H. P.; Roesyadi, A.; Budhikarjono, K. HZSM-5 catalyst for cracking palm oil to biodiesel: A Comparative study with and without Pt and Pd impregnation. Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry 2014b, 15 (1): 81–90.
Carlier, J.; Guitton, J.; Bévalot, F.; Fanton, L.; Gaillard. Y. The principal toxic glycosidic steroids in Cerbera manghas L. seeds: Identification of cerberin, neriifolin, tanghinin and deacetyltanghinin by UHPLC–HRMS/MS, quantification by UHPLC–PDA-MS. J. Chromatogr. B 2014, 962, 1–8. https://doi.org/10.1016/j.jchromb.2014.05.014
Chen, X.; Dong, M.; Niu, X.; Wang, K.; Chen, G.; Fan, W.; Wang, J.; Qin, Z. Influence of Zn species in HZSM-5 on ethylene aromatization. Chin. J. Catal. 2015, 36 (6), 880–888. https://doi.org/10.1016/S1872-2067(14)60289-8
Chen, L.; Li, H.; Fu, J.; Miao, C.; Lv, P.; Yuan, Z. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst. Catal. Today 2016, 259 (Part 2), 266–276. https://doi.org/10.1016/j.cattod.2015.08.023
Chuah, L. F.; Yusup, S.; Aziz, A. R. A.; Klemeš, J. J.; Bokhari, A.; Abdullah, M. Z. Influence of fatty acids content in non-edible oil for biodiesel properties. Clean Techn. Environ. Policy 2016, 18, 473–482. https://doi.org/10.1007/s10098-015-1022-x
Dwivedi, G.; Sharma, M. P. Application of Box-Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel 2015, 145, 256–262. https://doi.org/10.1016/j.jiec.2012.03.019
Haber, J.; Block, J. H.; Delmon, B. Manual of methods and procedures for catalyst characterization. Pure & Appl. Chem. 1995, 67 (Nos 8/9), 1257–1306. https://doi.org/10.1351/pac199567081257
Hao, K.; Shen, B.; Wang, Y.; Ren, J. Influence of combined alkaline treatment and Fe–Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production. J. Ind. Eng. Chem. 2012, 18 (5), 1736–1740. https://doi.org/10.1016/j.jiec.2012.03.019
Isahak, W. N. R. W.; Hisham, M. W. M.; Yarmo, M. A.; Hin, T.-y. Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16 (8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
Ishihara, A.; Fukui, N.; Nasu, H.; Hashimoto, T. Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalyst. Fuel 2014, 134, 611–617. https://doi.org/10.1016/j.fuel.2014.06.004
Kim, S. K.; Brand, S.; Lee, H.-s.; Kim, Y.; Kim, J. Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chem. Eng. J. 2013, 228, 114–123. https://doi.org/10.1016/j.cej.2013.04.095
Li, L.; Quan, K.; Xu, J.; Liu, F.; Liu, S.; Yu, S.; Xie, C.; Zhang, B.; Ge, X. Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel 2014, 123, 189–193. https://doi.org/10.1016/j.fuel.2014.01.049
Liu, S.; Zhu, Q.; Guan, Q.; He, L.; Li, W. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol. 2015, 183, 93–100. https://doi.org/10.1016/j.biortech.2015.02.056
Lu, Q.; Li, W.-Z.; Zhu, X.-F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 2009, 50 (5), 1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001
Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitino, D. H. Production of biofuel by hydrocracking of Cerbera Manghas oil using Co-Ni/HZSM-5 catalyst: Effect of reaction temperature. J. Pure App. Chem. Res. 2016, 5 (3), 189–195. https://doi.org/10.21776/ub.jpacr.2016.005.03.254
Niu, X.; Gao, J.; Miao, Q.; Dong, M.; Wang, G.; Fan, W.; Qin, Z.; Wang, J. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous Mesoporous Mater. 2014, 197, 252–261. https://doi.org/10.1016/j.micromeso.2014.06.027
Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B. Hydrogenation of rapeseed oil for production of liquid bio-chemicals. Appl. Energy 2013, 102, 272–282. https://doi.org/10.1016/j.apenergy.2012.04.008
Pinto, F.; Varela, F. T.; Gonçalves, M.; André Neto, R.; Costa, P.; Mendes, B. Production of bio-hydrocarbons by hydrotreating of pomace oil. Fuel 2014, 116, 84–93. https://doi.org/10.1016/j.fuel.2013.07.116
Prajitno, D. H.; Roesyadi, A.; Budianto, A.; Iqbal, M.; Purnomo, V. Modification of Ni-Zn/HZSM-5 double promoted catalyst for biofuel production from Cerbera manghas oil. In Green Chemistry Section 1: Material Chemistry, Proceedings of the 9th Joint Conference on Chemistry, Semarang, Indonesia, November 12–13, 2014; Prajitno, D. H.; Roesyadi, A.; Budianto, A.; Iqbal, M.; Purnomo, V., Eds.; Diponegoro University: Semarang, 2015; pp 25–28.
Rasyid, R.; Prihartantyo, A.; Mahfud, M.; Roesyadi, A. Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts. Bull. Chem. React. Eng. Catal. 2015, 10 (1), 61–69. https://doi.org/10.9767/bcrec.10.1.6597.61-69
Rocha Filho, G. N.; Brodzki, D.; Djéga-Mariadassou, G. Formation of alkanes alkylcykloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel 1993, 72 (4), 543–549. https://doi.org/10.1016/0016-2361(93)90114-H
Roesyadi, A.; Hariprajitno, D.; Nurjannah, N.; Savitri, S. D. HZSM-5 Catalyst for cracking palm oil to gasoline: A comparative study with and without impregnation. Bull. Chem. React. Eng. Catal. 2013, 7 (3), 185–190. https://doi.org/10.9767/bcrec.7.3.4045.185-190
Roesyadi, A. Pembuatan Biofuel dari Minyak Nabati; PT. Revka Petra Media, 2016.
Roesyadi, A.; Budianto, A.; Prajitno, D. H.; Gunardi, I.; Marlinda, L. Metode Pembuatan Katalis Ni-Zn/HZSM-5 untuk Produksi Biofuel dari Minyak Bintaro (Cerbera Manghas Oil). ID, P00201607714, 2016. https://pdki-indonesia.dgip.go.id/detail/P00201607714?type=patent&keyword=bintaro (accessed 2021-12-19).
Romero, M. D.; Calles, J. A.; Rodríguez, A.; Cabanelas, J. C. The influence of calcination treatment over bifunctional Ni/HZSM-5 catalysts. Ind. Eng. Chem. Res. 1998, 37 (10), 3846–3852. https://doi.org/10.1021/ie980143i
Romero, M.; Pizzi, A.; Toscano, G.; Casazza, A. A.; Busca, G.; Bosio, B.; Arato, E. Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil. Fuel Process. Technol. 2015, 137, 31–37. https://doi.org/10.1016/j.fuproc.2015.04.002
Santillan-Jimenez E.; Crocker, M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1041–1050. https://doi.org/10.1002/jctb.3775
Sartipi, S.; Parashar, K.; Valero-Romero, M. J.; Santos, V. P.; van der Linden, B.; Makkee, M.; Kapteijn, F.; Gascon, J. Hierarchical H-ZSM-5-supported cobalt for direct synthesis of gasoline-range hydrocarbon from syngas: Advantages, limitation, and mechanistic insight. J. Catal. 2013, 305, 179–190. https://doi.org/10.1016/j.jcat.2013.05.012
Silva, V. T.; Sousa, L. A. Catalytic upgrading of fats and vegetable oils for the production of fuels. In The role of catalysis for the sustainable production of bio-fuels and bio-chemicals; Elsevier Science; 2013, pp 67–92. https://doi.org/10.1016/B978-0-444-56330-9.00003-6
Šimáček, P.; Kubička, D.; Šebor, G.; Pospíšil, M. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel 2009, 88 (3), 456–460. https://doi.org/10.1016/j.fuel.2008.10.022
Šimáček, P.; Kubička, D.; Kubičková, I.; Homola, F.; Pospíšil, M.; Chudoba, J. Premium quality renewable diesel fuel by hydroprocessing of sunflower oil. Fuel 2011, 90, 2473–2479. https://doi.org/10.1016/j.fuel.2011.03.013
Sotelo-Boyás, R.; Trejo-Zárraga, F.; Hernández-Loyo, F. J. Hydroconversion of triglycerides into green liquid fuels. In Hydrogenation; IntechOpen, 2012; pp 187–216. https://doi.org/10.5772/48710
Tamiyakul, S.; Anutamjarikun, S.; Jongpatiwut, S. The effect of Ga and Zn over HZSM-5 on the transformation of palm fatty acid distillate (PFAD) to aromatics. Catal. Commun. 2016, 74, 49–54. https://doi.org/10.1016/j.catcom.2015.11.002
Vichaphund, S.; Aht-ong, D.; Sricharoenchaikul, V.; Atong, D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew. Energy 2015, 79, 28–37. https://doi.org/10.1016/j.renene.2014.10.013
Vitale, G.; Molero, H.; Hernandez, E.; Aquino, S.; Birss, V.; Pereira-Almao, P. One-pot preparation and characterization of bifunctional Ni-containing ZSM-5 catalyst. Appl. Catal. A: Gen. 2013, 452, 75–87. https://doi.org/10.1016/j.apcata.2012.11.026
Wang, S.; Yin, Q.; Guo, J.; Ru, B.; Zhu, L. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalyst. Fuel 2013, 108, 597-603. https://doi.org/10.1016/j.fuel.2013.02.021
Wang, C.; Liu, Q.; Song, J.; Li, W.; Li, P.; Xu, R.; Ma, H.; Tian, Z. High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst. Catal. Today 2014, 234, 153–160. https://doi.org/10.1016/j.cattod.2014.02.011
Wu, L.; Guo, S.; Wang, C.; Yang Z. Production of alkanes (C7–C29) from different part of poplar tree via direct deoxy-liquefaction. Bioresour. Technol. 2009, 100 (6), 2069–2076. https://doi.org/10.1016/j.biortech.2008.10.024
Zhang, H.; Lin, H.; Zheng, Y. The role of cobalt and nickel in deoxygenation of vegetable oils. Appl. Catal. B: Environ. 2014, 160–161, 415–422. https://doi.org/10.1016/j.apcatb.2014.05.043
Zheng, X.; Chang, J.; Fu, Y. One-pot catalytic hydrocracking of diesel distillate and residual oil fractions obtained from bio-oil to gasoline-range hydrocarbon fuel. Fuel 2015, 157, 107–114. https://doi.org/10.1016/j.fuel.2015.05.002