Abstract
The effects of reaction temperature on the hydrocarbon composition of biofuel produced in hydrocracking of Cerbera manghas oil with Ni-Zn/HZSM-5 catalyst were investigated. The incipient wetness impregnation method was applied to prepare the Ni-Zn/HZSM-5 catalysts. Furthermore, the properties of catalysts were measured by X-ray diffraction, atomic absorption spectrometry, and nitrogen physisorption. Hydrocracking process was carried out in Parr USA pressure batch reactor at pressure of 20 ± 5 bar after flowing H2 for 1 h. The reaction with a catalyst/oil ratio of 1 g/150 mL proceeded at various temperatures of 350, 375 and 400 °C for 2 h. Gas chromatography-mass spectrometry was used to analyze biofuel. The most abundant hydrocarbon compounds in biofuel were identified as pentadecane and heptadecane (a major diesel fuel compound) with a different amount at different reaction temperatures. It can be said that the hydrodecarboxylation/decarbonylation routes were the predominant reaction pathways and oxygen removal occurred during hydrocracking. The Cerbera manghas oil can be recommended as a promising biofeed to produce the gasoil as an alternative transportation fuel.
References
Arun, N.; Sharma, R. V.; Dalai, A. K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renew. Sustain. Energy Rev. 2015, 48, 240–255. https://doi.org/10.1016/j.rser.2015.03.074
Ayodele, O. B.; Farouk, H. U.; Mohammed, J.; Uemura, Y.; Daud W. M. A. W. Hydrodeoxygenation of oleic acid into n- and iso-paraffin biofuel using zeolite supported fluor-oxalate modified molybdenum catalyst: Kinetics study. J. Taiwan Inst. Chem. Eng. 2015, 50, 142–152. https://doi.org/10.1016/j.jtice.2014.12.014
Barrón, C. A. E.; Melo-Banda, J. A.; Dominguez, J. M. E.; Hernández, M. E.; Silva, R. R.; Reyes, T. A. I.; Meraz, M. M. A. Catalytic hydrocracking of vegetable oil for agrofuels production using Ni–Mo, Ni–W, Pt and TFA catalysts supported on SBA-15. Catal. Today 2011, 166 (1), 102–110. https://doi.org/10.1016/j.cattod.2011.01.026
Bezergianni, S.; Dimitriadis, A.; Meletidis, G. Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil–waste cooking oil mixtures. Fuel 2014, 125, 129–136. https://doi.org/10.1016/j.fuel.2014.02.010
Bockisch, M. Fats and Oils Handbook; AOCS Press, 1998. https://doi.org/10.1016/B978-0-9818936-0-0.50003-2
Budianto, A.; Prajitno, D. H.; Budhikarjono, K. Biofuel production from candlenut oil using catalytic cracking process with Zn/HZSM-5 catalyst. ARPN J. Eng. Appl. Sci. 2014a, 9 (11), 2121–2124.
Budianto, A.; Danawati H. P.; Roesyadi, A.; Budhikarjono, K. HZSM-5 catalyst for cracking palm oil to biodiesel: A Comparative study with and without Pt and Pd impregnation. Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry 2014b, 15 (1): 81–90.
Carlier, J.; Guitton, J.; Bévalot, F.; Fanton, L.; Gaillard. Y. The principal toxic glycosidic steroids in Cerbera manghas L. seeds: Identification of cerberin, neriifolin, tanghinin and deacetyltanghinin by UHPLC–HRMS/MS, quantification by UHPLC–PDA-MS. J. Chromatogr. B 2014, 962, 1–8. https://doi.org/10.1016/j.jchromb.2014.05.014
Chen, X.; Dong, M.; Niu, X.; Wang, K.; Chen, G.; Fan, W.; Wang, J.; Qin, Z. Influence of Zn species in HZSM-5 on ethylene aromatization. Chin. J. Catal. 2015, 36 (6), 880–888. https://doi.org/10.1016/S1872-2067(14)60289-8
Chen, L.; Li, H.; Fu, J.; Miao, C.; Lv, P.; Yuan, Z. Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst. Catal. Today 2016, 259 (Part 2), 266–276. https://doi.org/10.1016/j.cattod.2015.08.023
Chuah, L. F.; Yusup, S.; Aziz, A. R. A.; Klemeš, J. J.; Bokhari, A.; Abdullah, M. Z. Influence of fatty acids content in non-edible oil for biodiesel properties. Clean Techn. Environ. Policy 2016, 18, 473–482. https://doi.org/10.1007/s10098-015-1022-x
Dwivedi, G.; Sharma, M. P. Application of Box-Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel 2015, 145, 256–262. https://doi.org/10.1016/j.jiec.2012.03.019
Haber, J.; Block, J. H.; Delmon, B. Manual of methods and procedures for catalyst characterization. Pure & Appl. Chem. 1995, 67 (Nos 8/9), 1257–1306. https://doi.org/10.1351/pac199567081257
Hao, K.; Shen, B.; Wang, Y.; Ren, J. Influence of combined alkaline treatment and Fe–Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production. J. Ind. Eng. Chem. 2012, 18 (5), 1736–1740. https://doi.org/10.1016/j.jiec.2012.03.019
Isahak, W. N. R. W.; Hisham, M. W. M.; Yarmo, M. A.; Hin, T.-y. Y. A review on bio-oil production from biomass by using pyrolysis method. Renew. Sustain. Energy Rev. 2012, 16 (8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
Ishihara, A.; Fukui, N.; Nasu, H.; Hashimoto, T. Hydrocracking of soybean oil using zeolite-alumina composite supported NiMo catalyst. Fuel 2014, 134, 611–617. https://doi.org/10.1016/j.fuel.2014.06.004
Kim, S. K.; Brand, S.; Lee, H.-s.; Kim, Y.; Kim, J. Production of renewable diesel by hydrotreatment of soybean oil: Effect of reaction parameters. Chem. Eng. J. 2013, 228, 114–123. https://doi.org/10.1016/j.cej.2013.04.095
Li, L.; Quan, K.; Xu, J.; Liu, F.; Liu, S.; Yu, S.; Xie, C.; Zhang, B.; Ge, X. Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel 2014, 123, 189–193. https://doi.org/10.1016/j.fuel.2014.01.049
Liu, S.; Zhu, Q.; Guan, Q.; He, L.; Li, W. Bio-aviation fuel production from hydroprocessing castor oil promoted by the nickel-based bifunctional catalysts. Bioresour. Technol. 2015, 183, 93–100. https://doi.org/10.1016/j.biortech.2015.02.056
Lu, Q.; Li, W.-Z.; Zhu, X.-F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manag. 2009, 50 (5), 1376–1383. https://doi.org/10.1016/j.enconman.2009.01.001
Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitino, D. H. Production of biofuel by hydrocracking of Cerbera Manghas oil using Co-Ni/HZSM-5 catalyst: Effect of reaction temperature. J. Pure App. Chem. Res. 2016, 5 (3), 189–195. https://doi.org/10.21776/ub.jpacr.2016.005.03.254
Niu, X.; Gao, J.; Miao, Q.; Dong, M.; Wang, G.; Fan, W.; Qin, Z.; Wang, J. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous Mesoporous Mater. 2014, 197, 252–261. https://doi.org/10.1016/j.micromeso.2014.06.027
Pinto, F.; Martins, S.; Gonçalves, M.; Costa, P.; Gulyurtlu, I.; Alves, A.; Mendes, B. Hydrogenation of rapeseed oil for production of liquid bio-chemicals. Appl. Energy 2013, 102, 272–282. https://doi.org/10.1016/j.apenergy.2012.04.008
Pinto, F.; Varela, F. T.; Gonçalves, M.; André Neto, R.; Costa, P.; Mendes, B. Production of bio-hydrocarbons by hydrotreating of pomace oil. Fuel 2014, 116, 84–93. https://doi.org/10.1016/j.fuel.2013.07.116
Prajitno, D. H.; Roesyadi, A.; Budianto, A.; Iqbal, M.; Purnomo, V. Modification of Ni-Zn/HZSM-5 double promoted catalyst for biofuel production from Cerbera manghas oil. In Green Chemistry Section 1: Material Chemistry, Proceedings of the 9th Joint Conference on Chemistry, Semarang, Indonesia, November 12–13, 2014; Prajitno, D. H.; Roesyadi, A.; Budianto, A.; Iqbal, M.; Purnomo, V., Eds.; Diponegoro University: Semarang, 2015; pp 25–28.
Rasyid, R.; Prihartantyo, A.; Mahfud, M.; Roesyadi, A. Hydrocracking of Calophyllum inophyllum oil with non-sulfide CoMo catalysts. Bull. Chem. React. Eng. Catal. 2015, 10 (1), 61–69. https://doi.org/10.9767/bcrec.10.1.6597.61-69
Rocha Filho, G. N.; Brodzki, D.; Djéga-Mariadassou, G. Formation of alkanes alkylcykloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel 1993, 72 (4), 543–549. https://doi.org/10.1016/0016-2361(93)90114-H
Roesyadi, A.; Hariprajitno, D.; Nurjannah, N.; Savitri, S. D. HZSM-5 Catalyst for cracking palm oil to gasoline: A comparative study with and without impregnation. Bull. Chem. React. Eng. Catal. 2013, 7 (3), 185–190. https://doi.org/10.9767/bcrec.7.3.4045.185-190
Roesyadi, A. Pembuatan Biofuel dari Minyak Nabati; PT. Revka Petra Media, 2016.
Roesyadi, A.; Budianto, A.; Prajitno, D. H.; Gunardi, I.; Marlinda, L. Metode Pembuatan Katalis Ni-Zn/HZSM-5 untuk Produksi Biofuel dari Minyak Bintaro (Cerbera Manghas Oil). ID, P00201607714, 2016. https://pdki-indonesia.dgip.go.id/detail/P00201607714?type=patent&keyword=bintaro (accessed 2021-12-19).
Romero, M. D.; Calles, J. A.; Rodríguez, A.; Cabanelas, J. C. The influence of calcination treatment over bifunctional Ni/HZSM-5 catalysts. Ind. Eng. Chem. Res. 1998, 37 (10), 3846–3852. https://doi.org/10.1021/ie980143i
Romero, M.; Pizzi, A.; Toscano, G.; Casazza, A. A.; Busca, G.; Bosio, B.; Arato, E. Preliminary experimental study on biofuel production by deoxygenation of Jatropha oil. Fuel Process. Technol. 2015, 137, 31–37. https://doi.org/10.1016/j.fuproc.2015.04.002
Santillan-Jimenez E.; Crocker, M. Catalytic deoxygenation of fatty acids and their derivatives to hydrocarbon fuels via decarboxylation/decarbonylation. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1041–1050. https://doi.org/10.1002/jctb.3775
Sartipi, S.; Parashar, K.; Valero-Romero, M. J.; Santos, V. P.; van der Linden, B.; Makkee, M.; Kapteijn, F.; Gascon, J. Hierarchical H-ZSM-5-supported cobalt for direct synthesis of gasoline-range hydrocarbon from syngas: Advantages, limitation, and mechanistic insight. J. Catal. 2013, 305, 179–190. https://doi.org/10.1016/j.jcat.2013.05.012
Silva, V. T.; Sousa, L. A. Catalytic upgrading of fats and vegetable oils for the production of fuels. In The role of catalysis for the sustainable production of bio-fuels and bio-chemicals; Elsevier Science; 2013, pp 67–92. https://doi.org/10.1016/B978-0-444-56330-9.00003-6
Šimáček, P.; Kubička, D.; Šebor, G.; Pospíšil, M. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel 2009, 88 (3), 456–460. https://doi.org/10.1016/j.fuel.2008.10.022
Šimáček, P.; Kubička, D.; Kubičková, I.; Homola, F.; Pospíšil, M.; Chudoba, J. Premium quality renewable diesel fuel by hydroprocessing of sunflower oil. Fuel 2011, 90, 2473–2479. https://doi.org/10.1016/j.fuel.2011.03.013
Sotelo-Boyás, R.; Trejo-Zárraga, F.; Hernández-Loyo, F. J. Hydroconversion of triglycerides into green liquid fuels. In Hydrogenation; IntechOpen, 2012; pp 187–216. https://doi.org/10.5772/48710
Tamiyakul, S.; Anutamjarikun, S.; Jongpatiwut, S. The effect of Ga and Zn over HZSM-5 on the transformation of palm fatty acid distillate (PFAD) to aromatics. Catal. Commun. 2016, 74, 49–54. https://doi.org/10.1016/j.catcom.2015.11.002
Vichaphund, S.; Aht-ong, D.; Sricharoenchaikul, V.; Atong, D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew. Energy 2015, 79, 28–37. https://doi.org/10.1016/j.renene.2014.10.013
Vitale, G.; Molero, H.; Hernandez, E.; Aquino, S.; Birss, V.; Pereira-Almao, P. One-pot preparation and characterization of bifunctional Ni-containing ZSM-5 catalyst. Appl. Catal. A: Gen. 2013, 452, 75–87. https://doi.org/10.1016/j.apcata.2012.11.026
Wang, S.; Yin, Q.; Guo, J.; Ru, B.; Zhu, L. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalyst. Fuel 2013, 108, 597-603. https://doi.org/10.1016/j.fuel.2013.02.021
Wang, C.; Liu, Q.; Song, J.; Li, W.; Li, P.; Xu, R.; Ma, H.; Tian, Z. High quality diesel-range alkanes production via a single-step hydrotreatment of vegetable oil over Ni/zeolite catalyst. Catal. Today 2014, 234, 153–160. https://doi.org/10.1016/j.cattod.2014.02.011
Wu, L.; Guo, S.; Wang, C.; Yang Z. Production of alkanes (C7–C29) from different part of poplar tree via direct deoxy-liquefaction. Bioresour. Technol. 2009, 100 (6), 2069–2076. https://doi.org/10.1016/j.biortech.2008.10.024
Zhang, H.; Lin, H.; Zheng, Y. The role of cobalt and nickel in deoxygenation of vegetable oils. Appl. Catal. B: Environ. 2014, 160–161, 415–422. https://doi.org/10.1016/j.apcatb.2014.05.043
Zheng, X.; Chang, J.; Fu, Y. One-pot catalytic hydrocracking of diesel distillate and residual oil fractions obtained from bio-oil to gasoline-range hydrocarbon fuel. Fuel 2015, 157, 107–114. https://doi.org/10.1016/j.fuel.2015.05.002

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2022 Eclética Química Journal