Green synthesis of iron oxide nanoparticles for biomedical application and environmental remediation: a review

Main Article Content

Sunday Adewale Akintelu
Abel Kolawole Oyebamiji
Seyifunmi Charles Olugbeko
Aderonke Similoluwa Folorunso

Abstract

Ferrous oxide nanoparticles (IONPs) formed from plant materials have been considered as chemically friendly materials and have offered extensive applications. The distinctive features of IONPs, such as biocompatibility, low toxicity, catalytic behavior and multi reaction mechanism, have embodied them as good candidate for several biomedical applications. However, the synthesis of IONPs using plant extracts is gaining high popularity and recommendations because plant extracts could act as reducing and stabilizing agents during the process of synthesis. Furthermore, the biological method of synthesizing IONPs using plant extract offer some benefits, such as being simple, economic, environmentally friendly and require less energy when compared with both physical and chemical methods of synthesis. Hence, this review significantly summarized the synthesis, optimum conditions and characterization techniques involved in the synthesis of IONPs using several plant extracts. Consequently, comprehensive information about the applications of green synthesized IONPs as antimicrobial and anticancer therapeutic agents were well presented. The effectiveness of IONPs in environmental treatment of effluent containing dyes and other toxic agents were also properly discussed.

Metrics

PDF views
360
Oct 01 '21Oct 04 '21Oct 07 '21Oct 10 '21Oct 13 '21Oct 16 '21Oct 19 '21Oct 22 '21Oct 25 '21Oct 28 '215.0
| |
Other format views
12
Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20266.0
|

Article Details

How to Cite
Akintelu, S. A., Oyebamiji, A. K., Olugbeko, S. C., & Folorunso, A. S. (2021). Green synthesis of iron oxide nanoparticles for biomedical application and environmental remediation: a review. Eclética Química, 46(4), 17–37. https://doi.org/10.26850/1678-4618eqj.v46.4.2021.p17-37
Section
Review

References

Adio, S. O.; Omar, M. H.; Asif, M.; Saleh, T. A. Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: A factorial design analysis. Process Saf. Environ. Prot. 2017, 107, 518–527. https://doi.org/10.1016/j.psep.2017.03.004

Ahmad, W.; Khan, A. U.; Shams, S.; Qin, L.; Yuan, Q.; Ahmad, A.; Wei, Y.; Khan, Z. U. H.; Ullah, S.; Rahman, A. U. Eco-benign approach to synthesize spherical iron oxide nanoparticles: A new insight in photocatalytic and biomedical applications. J. Photochem. Photobiol. B, Biol. 2020, 205, 111821. https://doi.org/10.1016/j.jphotobiol.2020.111821

Ahmed, A.; Usman, M.; Yu, B.; Ding, X.; Peng, Q.; Shen, Y.; Cong, H. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. J. Photochem. Photobiol. B, Biol. 2020, 202, 111682. https://doi.org/10.1016/j.jphotobiol.2019.111682

Aisida, S. O.; Madubuonu, N.; Alnasir, M. H.; Ahmad, I.; Botha, S.; Maaza, M.; Ezema, F. I. Biogenic synthesis of iron oxide nanorods using Moringa oleifera leaf extract for antibacterial applications. Appl. Nanosci. 2020a, 10, 305–315. https://doi.org/10.1007/s13204-019-01099-x

Aisida, S. O.; Ahmad, I.; Ezema, F. I. Effect of calcination on the microstructural and magnetic properties of PVA, PVP and PEG assisted zinc ferrite nanoparticles. Phys. B: Condens. Matter 2020b, 579, 411907. https://doi.org/10.1016/j.physb.2019.411907

Aisida, S. O.; Ugwu, K.; Akpa P.; Nwanya, A. C.; Nwankwo, U.; Bashir, A. K. H.; Madiba, I.; Ahmed, I.; Ezema, F. Synthesis and characterization of iron oxide nanoparticles capped with Moringa oleifera: The mechanisms of formation effects on the optical, structural, magnetic and morphological properties. Mater. Today: Proc. 2021, 36, 214–218.

Akintelu, S. A.; Folorunso, A. S. Biosynthesis, Characterization and Antifungal Investigation of Ag-Cu Nanoparticles from Bark Extracts of Garcina kola. Stem Cell 2019a, 10 (4), 30–37. https://doi.org/10.7537/marsscj100419.05

Akintelu, S. A.; Folorunso, A. S. Characterization and Antimicrobial Investigation of Synthesized Silver Nanoparticles from Annona muricata Leaf Extracts. Journal of Nanotechnology Nanomedicine & Nanobiotechnology 2019b, 6, 022. https://doi.org/10.24966/NTMB-2044/100022

Akintelu, S. A.; Folorunso, A. S.; Ademosun, O. T. Instrumental Characterization and Antibacterial Investigation of Silver Nanoparticles Synthesized from Garcinia Kola Leaf. Journal of Drug Delivery and Therapeutics 2019a, 9 (6-S), 58–64. https://doi.org/10.22270/jddt.v9i6-s.3749

Akintelu, S. A.; Folorunso, A. S.; Oyebamiji, A. K.; Erazua, E. A. Antibacterial potency of silver nanoparticles synthesized using Boerhaavia diffusa leaf extract as reductive and stabilizing agent. Int. J. Pharm. Sci. Res. 2019b, 10 (12), 374–380.

Akintelu, S. A.; Olugbeko, S. C.; Folorunso, A. S. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. Int. Nano Lett. 2020a, 10, 237–248. https://doi.org/10.1007/s40089-020-00317-7

Akintelu, S. A.; Olugbeko, S. C.; Folorunso, F. A.; Oyebamiji, A. K.; Folorunso, A. S. Characterization and Pharmacological Efficacy of Silver Nanoparticles Biosynthesized Using the Bark Extract of Garcinia Kola. J. Chem. 2020b, 2020, 2876019. https://doi.org/10.1155/2020/2876019

Akintelu, S. A.; Bo, Y.; Folorunso, A. S. A Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants. J. Chem. 2020c, 2020, 3189043. https://doi.org/10.1155/2020/3189043

Akintelu, S. A.; Yao, B.; Folorunso, A. S. Green Synthesis, Characterization, and Antibacterial Investigation of Synthesized Gold Nanoparticles (AuNPs) from Garcinia kola Pulp Extract. Plasmonics 2021, 16, 157–165. https://doi.org/10.1007/s11468-020-01274-9

Alam, T.; Khan, R. A. A.; Ali, K.; Ali, A.; Sher, H.; Ullah, Z.; Ali, M. Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Mater. Sci. Eng. C 2019, 98, 101–108. https://doi.org/10.1016/j.msec.2018.12.117

Alharbi, K. K.; Al-sheikh, Y. A. Role and implications of nanodiagnostics in the changing trends of clinical diagnosis. Saudi J. Biol. Sci. 2014, 21 (2), 109–117. https://doi.org/10.1016/j.sjbs.2013.11.001

Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. https://doi.org/10.2147/NSA.S99986

Ansari, S. A.; Oves, M.; Satar, R.; Khan, A.; Ahmad, S. I.; Jafri, M. A.; Zaidi, S. K.; Alqahtani, M. H. Antibacterial activity of iron oxide nanoparticles synthesized by co–precipitation technology against Bacillus cereus and Klebsiella pneumoniae. Pol. J. Chem. Tech. 2017, 19 (4), 110–115. https://doi.org/10.1515/pjct-2017-0076

Arokiyaraj, S.; Saravanan, M.; Prakash, N. K. U.; Arasu, M. V.; Vijayakumar, B.; Vincent, S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone Mexicana L. leaf extract: An in vitro study. Mater. Res. Bull. 2013, 48, 3323–3327. https://doi.org/10.1016/j.materresbull.2013.05.059

Arsalani, S.; Guidelli, E. J.; Silveira, M. A.; Salmon, C. E. G.; Araujo, J. F. D. F.; Bruno, A. C.; Baffa, O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J. Magn. Magn. Mater. 2019, 475, 458–464. https://doi.org/10.1016/j.jmmm.2018.11.132

Arularasu, M. V.; Devakumar, J.; Rajendran, T. V. An innovative approach for green synthesis of iron oxide nanoparticles: Characterization and its photocatalytic activity. Polyhedron 2018, 156, 279–290. https://doi.org/10.1016/j.poly.2018.09.036

Asghar, M. A.; Zahir, E.; Shahid, S. M.; Khan, M. N.; Asghar, M. A.; Iqbal, J.; Walker, G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT 2018, 90, 98–107. https://doi.org/10.1016/j.lwt.2017.12.009

Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein, H.; Anarjan, N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Research 2016, 9, 2203–2225. https://doi.org/10.1007/s12274-016-1131-9

Badni, N.; Benheraoua, F. Z.; Tadjer, B.; Boudjemaa, A.; El Hameur, H.; Bachari, K. Green synthesis of α-Fe2O3 nanoparticles using Roman nettle. Proceedings of the Third International Conference on Energy, Materials, Applied Energetics and Pollution, ICEMAEP2016, Constantina, Algeria, October 30–31, 2016; Kadja, M., Zaatri, A., Nemouchi, Z., Bessaih, R., Benissaad, S., Talbi, K., Eds.

Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 2017, 190, 64–83. https://doi.org/10.1016/j.imlet.2017.07.015

Bashir, A. K. H.; Mayedwa, N.; Kaviyarasu, K.; Razanamahandry, L. C.; Matinise, N.; Bharuth-Ram, K.; Tchokonté, M. B. T.; Ezema, F. I.; Maaza, M. Investigation of electrochemical performance of the biosynthesized α-Fe2O3 nanorods. Surf. Interfaces 2019, 17, 100345. https://doi.org/10.1016/j.surfin.2019.100345

Berry, C. C.; Wells, S.; Charles, S.; Aitchison, G.; Curtis, A. S. G. Cell response to dextran-derivatised iron oxide nanoparticles post internalization. Biomaterials 2004, 25 (23), 5405–5413. https://doi.org/10.1016/j.biomaterials.2003.12.046

Bibi, I.; Nazar, N.; Ata, S.; Sultan, M.; Ali, A.; Abbas, A.; Jilani, K.; Kamal, S.; Sarim, F. M.; Khan, M. I.; Jalal, F.; Iqbal, M. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. J. Mat. Res. Technol. 2019, 8 (6), 6115–6124. https://doi.org/10.1016/j.jmrt.2019.10.006

Bishnoi, S.; Kumar, A.; Selvaraj, R. Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater. Res. Bull. 2018, 97, 121–127. https://doi.org/10.1016/j.materresbull.2017.08.040

Bolade, O. P.; Akinsiku, A. A.; Adeyemi, A. O.; Williams, A. B.; Benson, N. U. Dataset on phytochemical screening, FTIR and GC–MS characterisation of Azadirachta indica and Cymbopogon citratus as reducing and stabilising agents for nanoparticles synthesis. Data Brief 2018, 20, 917–926. https://doi.org/10.1016/j.dib.2018.08.133

Bolade, O. P.; Williams, A. B.; Benson, N. U. Green synthesis of iron-based nanomaterials for environmental remediation: A revie. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100279. https://doi.org/10.1016/j.enmm.2019.100279

Buiyan, S. H.; Muhammed, Y. M.; Paul, S. C.; Aka, T. D.; Saha, O.; Rahaman, M.; Sharif, J. I.; Habiba, O.; Ashaduzzaman. Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 2020, 6 (8), e04603. https://doi.org/10.1016/j.heliyon.2020.e04603

Cabrera, L.; Gutierrez, S.; Menendez, N.; Morales, M. P.; Herrasti, P. Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochim. Acta 2008, 53 (8), 3436–3441 https://doi.org/10.1016/j.electacta.2007.12.006

Chauhan, S.; Upadhyay, L. S. B. Biosynthesis of iron oxide nanoparticles using plant derivatives of Lawsonia inermis (Henna) and its surface modification for biomedical application. Nanotechnol. Environ. Eng. 2019, 4, 8. https://doi.org/10.1007/s41204-019-0055-5

Cheera, P.; Karlapudi, S.; Sellola, G.; Ponneri, V. A facile green synthesis of spherical Fe3O4 magnetic nanoparticles and their effect on degradation of methylene blue in aqueous solution. J. Mol. Liq. 2016, 221, 993–998. https://doi.org/10.1016/j.molliq.2016.06.006

Cho, J. S.; Lee, J.-C.; Rhee, S.-H. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104 (2), 422–430. https://doi.org/10.1002/jbm.b.33406

Demirezen, D. A.; Yilmaz, S.; Yilmaz, D. Green synthesis and characterization of iron nanoparticles using Aesculus hippocastanum seed extract. Int. J. Adv. Sci. Technol. 2018, 6 (2) (Suppl. 2), 25–29.

Desalegn, B.; Megharaj, M.; Chen, Z.; Naidu, R. Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 2019, 5 (5), e01750. https://doi.org/10.1016/j.heliyon.2019.e01750

Devatha, C. P.; Jagadeesh, K.; Mallikarjun, P. Effect of Green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Environ. Nanotechnol. Monit. Manag. 2018, 9, 85–94. https://doi.org/10.1016/j.enmm.2017.11.007

Devi, H. S., Boda, M. A., Shah, M. A., Parveen, S. Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process. Synth. 2018, 8 (1), 38–45. https://doi.org/10.1515/gps-2017-0145

Dutta, A. K.; Maji, S. K.; Adhikary, B. γ-Fe2O3 nanoparticles: An easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater. Res. Bull. 2014, 49, 28–34. https://doi.org/10.1016/j.materresbull.2013.08.024

Ebrahiminezhad, A.; Zare-Hoseinabadi, A.; Berenjian, A.; Ghasemi, Y. Green synthesis and characterization of zero-valent iron nanoparticles using stinging nettle (Urtica dioica) leaf extract. Green Process. Synth. 2017a, 6 (5).

Ebrahiminezhad, A.; Zare, M.; Kiyanpour, S.; Berenjian, A.; Niknezhad, S. V.; Ghasemi, Y. Biosynthesis of xanthangum-coated INPs by using Xanthomonas campestris. IET Nanobiotechnol. 2017b, 12 (3), 254–258. https://doi.org/10.1049/iet-nbt.2017.0199

El Shafey, A. M. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Gruyter Green Processing and Synthesis 2020, 9 (1), 304–339. https://doi.org/10.1515/gps-2020-0031

El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine (Lond) 2018, 13 (8), 953–971. https://doi.org/10.2217/nnm-2017-0336

Fatimah, I.; Pratiwi, E. Z.; Wicaksono, W. P. Synthesis of magnetic nanoparticles using Parkia speciosa Hassk pod extract and photocatalytic activity for Bromophenol blue degradation. Egypt. J. Aquat. Res. 2020, 46 (1), 35–40. https://doi.org/10.1016/j.ejar.2020.01.001

Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol. 2017, 28 (1), 122–130. https://doi.org/10.1016/j.apt.2016.09.003

Folorunso, A.; Akintelu, S.; Oyebamiji, A. K.; Ajayi, S.; Abiola, B.; Abdusalam, I.; Morakinyo, A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J. Nanostruct. Chem. 2019, 9, 111–117. https://doi.org/10.1007/s40097-019-0301-1

Fowsiya, J.; Madhumitha, G.; Al-Dhabi, N. A.; Arasu, M. V. Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J. Photochem. Photobiol. B, Biol. 2016, 162, 395–401. https://doi.org/10.1016/j.jphotobiol.2016.07.011

Franzoso, F.; Nisticò, R.; Cesano, F.; Corazzari, I.; Turci, F.; Scarano, D.; Prevot, A. B.; Magnacca, G.; Carlos, L.; Mártire, D. O. Biowaste-derived substances as a tool for obtaining magnet-sensitive materials for environmental applications in wastewater treatments. Chemical Engineering Journal 2017, 310 (Part 1), 307–316. https://doi.org/10.1016/j.cej.2016.10.120

Gan, L.; Lu, Z.; Cao, D.; Chen, Z. Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater. Sci. Eng. C 2018, 82, 41–45. https://doi.org/10.1016/j.msec.2017.08.073

Gao, L.; Fan, K.; Yan, X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 2017, 7 (13), 3207–3227. https://doi.org/10.7150/thno.19738

Gebre, S. H.; Sendeku, M. G. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: an overview. SN Appl. Sci. 2019, 1, 928. https://doi.org/10.1007/s42452-019-0931-4

Gholami, L.; Oskuee, R. K.; Tafaghodi, M.; Farkhani, A. R.; Darroudi, M. Green facile synthesis of low-toxic superparamagnetic iron oxide nanoparticles (SPIONs) and their cytotoxicity effects toward Neuro2A and HUVEC cell lines. Ceram. Int. 2018, 44 (8), 9263–9268. https://doi.org/10.1016/j.ceramint.2018.02.137

Gonawala, K. H.; Mehta, M. J. Removal of color from different dye wastewater by using ferric oxide as an adsorbent. Int. J. Eng. Res. Appl. 2014, 4 (5), 102–109.

Gunarani, G. I.; Raman, A. B.; Kumar, J. D.; Natarajan, S.; Jegadeesan, G. B. Biogenic synthesis of Fe and NiFe nanoparticles using Terminalia bellirica extracts for water treatment applications. Mater. Lett. 2019, 247, 90–94. https://doi.org/10.1016/j.matlet.2019.03.104

Harlekar, M.; Barve, S.; Kumar, R. Plant-Mediated Green Synthesis of Iron Nanoparticles. J. Nanoparticles 2014, 2014, 140614. https://doi.org/10.1155/2014/140614

Harshiny, M.; Iswarya, C. N.; Matheswaran, M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaves extract as reducing agents. Powder Technol. 2015, 286, 744–749. https://doi.org/10.1016/j.powtec.2015.09.021

Harshiny, M.; Samsudeen, N.; Kameswara, R. J.; Matheswaran, M. Biosynthesized FeO nanoparticles coated carbon anode for improving the performance of microbial fuel cell. International Journal of Hydrogen Energy 2017, 42 (42), 26488–26495. https://doi.org/10.1016/j.ijhydene.2017.07.084

Holban, A. M. Magnetite nanoshuttles for fighting Staphylococcus aureus infections: a recent review. Curr. Top. Med. Chem. 2015, 15 (16), 1589-1595. https://doi.org/10.2174/1568026615666150414152431

Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 137, 154–159. https://doi.org/10.1016/j.saa.2014.08.116

Ibraheem, F.; Aziz, M. H.; Fatima, M.; Shaheen, F.; Ali, S. M.; Huang, Q. In vitro Cytotoxicity, MMP and ROS activity of green synthesized nickel oxide nanoparticles using extract of Terminalia chebula against MCF-7 cells. Mater. Lett. 2019, 234, 129–133. https://doi.org/10.1016/j.matlet.2018.09.075

Iqbal, J.; Abbassi, B. A.; Ahmad, R.; Shahbaz, A.; Zahra, S. A.; Kanwal, S.; Rabbani, A.; Mahmood, T. Biogenic synthesis of green and cost-effective iron nanoparticles and evaluation of their potential biomedical properties. J. Mol. Struct. 2020, 1199, 126979. https://doi.org/10.1016/j.molstruc.2019.126979

Jacob, P. J.; Masarudin, M. J.; Hussein, M. Z.; Rahim, R. A. Optimization of process parameters influencing the sustainable construction of iron oxide nanoparticles by a novel tropical wetlands Streptomyces spp. J. Clean. Prod. 2019, 232, 193–202. https://doi.org/10.1016/j.jclepro.2019.05.359

Jagadeesan, G.; Srimathi, K.; Srinivas, N. S.; Manishkanna, S.; Vignesh, D. Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatal. Agric. Biotechnol. 2019, 21, 101354. https://doi.org/10.1016/j.bcab.2019.101354

Jagathesan, G.; Rajiv, P. Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal. Agric. Biotechnol. 2018, 13, 90–94. https://doi.org/10.1016/j.bcab.2017.11.014

Jin, X.; Liu, Y.; Tan, J.; Owens, G.; Chen, Z. Removal of Cr(VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. J. Clean. Prod. 2018, 176, 929–936. https://doi.org/10.1016/j.jclepro.2017.12.026

Jubb, A. M.; Allen, H. C. Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2010, 2 (10), 2804–2812. https://doi.org/10.1021/am1004943

Kamran, U.; Bhatti, H. N.; Iqbal, M.; Jamil, S.; Zahid, M. Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct. 2019, 1179, 532–539. https://doi.org/10.1016/j.molstruc.2018.11.006

Karpagavinayagam, P.; Vedhi, C. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum 2019, 160, 286–292. https://doi.org/10.1016/j.vacuum.2018.11.043

Katata-Seru, L.; Moremedi, T.; Aremu, O. S.; Bahadur, I. Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. J. Mol. Liq. 2018, 256, 296–304. https://doi.org/10.1016/j.molliq.2017.11.093

Khalil, A. T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z. K.; Maaza, M. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev. 2017, 10 (4), 186–201. https://doi.org/10.1080/17518253.2017.1339831

Khatami, M.; Alijani, H. Q.; Fakheri, B.; Mobasseri, Heydarpour, M.; Farahani, Z. K.; Khan, A. U. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod. 2019, 208, 1171–1177. https://doi.org/10.1016/j.jclepro.2018.10.182

Kheshtzar, R.; Berenjian, A., Ganji, N.; Taghizadeh, S.-M.; Maleki, M.; Taghizadeh, S.; Ghasemi, Y.; Ebrahiminezhadm A. Response surface methodology and reaction optimization to product zero-valent iron nanoparticles for organic pollutant remediation. Biocatalysis and Agricultural Biotechnology 2019, 21, 101329. https://doi.org/10.1016/j.bcab.2019.101329

Kulesh, N. A.; Novoselova, I. P.; Safronov, A. P.; Beketov, I. V.; Samatov, O. M.; Kurlyandskaya, G. V.; Morozova, M.; Denisova, T. P. Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples. J. Magn. Magn. Mater. 2016, 415, 39–44. https://doi.org/10.1016/j.jmmm.2016.01.095

Kumar, B.; Smita, K.; Cumbal, L.; Debut, A.; Galeas, S.; Guerrero, V. H. Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Mater. Chem. Phys. 2016, 179, 310–315. https://doi.org/10.1016/j.matchemphys.2016.05.045

Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the shape and size of iron oxide (α- Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys. 2017, 7, 3007–3015. https://doi.org/10.1016/j.rinp.2017.07.066

Lemine, O. M.; Omri, K.; Zhang, B.; El Mir, L.; Sajieddine, M.; Alyamani, A.; Bououdina, M. Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices Microstruct. 2012, 52, 793–799. https://doi.org/10.1016/j.spmi.2012.07.009

Lenders, J. J. M.; Mirabello, G.; Sommerdijk, N. A. J. M. Bioinspired magnetite synthesis via solid precursor phases. Chem. Sci. 2016, 7 (9), 5624–5634, https://doi.org/10.1039/C6SC00523C

Lin, J.; Weng, X.; Dharmarajan, R.; Chen, Z. Characterization and reactivity of iron-based nanoparticles synthesized by tea extracts under various atmospheres Chemosphere 2017, 169, 413–417. https://doi.org/10.1016/j.chemosphere.2016.11.092

Liu, G.; Sun, W.-j.; Tang, S.-s.; Liang, S.-q.; Liu, J. Synthesis of α-Fe2O3@SnO2 core-shell nanoparticles via low-temperature molten salt reaction route. Trans. Nonferrous Met. Soc. China 2015, 25 (11), 3651–3656. https://doi.org/10.1016/S1003-6326(15)64076-6

Liu, Y.; Jin, X.; Chen, Z. The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). Sci. Total Environ. 2018, 627, 470–479. https://doi.org/10.1016/j.scitotenv.2018.01.241

Liu, H.; Sun, Y.; Yu, T.; Zhang, J.; Zhang, X.; Zhang, H.; Zhao, K.; Wei, J. Plant-mediated biosynthesis of iron nanoparticles-calcium alginate hydrogel membrane and its eminent performance in removal of Cr(VI). Chem. Eng. J. 2019, 378, 122120. https://doi.org/10.1016/j.cej.2019.122120

Madubuonu, N.; Aisida, S. O.; Ali, A.; Ahmad, I., Zhao, T.-K.; Bothag, S.; Maaza, M., Ezema, F. I. Biosynthesis of iron oxide nanoparticles via a composite of Psidium guavaja- Moringa oleifera and their antibacterial and photocatalytic study. J. Photochem. Photobiol. B, Biol. 2019, 199, 111601. https://doi.org/10.1016/j.jphotobiol.2019.111601

Madubuonu, N.; Aisida, S. O.; Ahmad, I.; Botha, S.; Zhao, T.-k.; Maaza, M.; Ezema, F. I. E. Bio‑inspired iron oxide nanoparticles using Psidium guajava aqueous extract for antibacterial activity. Appl. Phys. A 2020, 126, 72. https://doi.org/10.1007/s00339-019-3249-6

Miri, A.; Khatami, M.; Sarani, M. Biosynthesis, Magnetic and Cytotoxic Studies of Hematite Nanoparticles. J. Inorg. Organomet. Polym. 2020, 30, 767–774. https://doi.org/10.1007/s10904-019-01245-6

Mirza, A. U.; Kareem, A.; Nami, S. A. A.; Khan, M. S.; Rehman, S.; Bhat, S. A.; Mohammad, A.; Nishat, N. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity. J. Photochem. Photobiol. B, Biol. 2018, 185, 262–274. https://doi.org/10.1016/j.jphotobiol.2018.06.009

Mohamed, F.; Rabia, M.; Shaban, M. Synthesis and characterization of biogenic iron oxides of different nanomorphologies from pomegranate peels for efficient solar hydrogen production. J. Mater. Res. Technol. 2020, 9 (3), 4255–4271. https://doi.org/10.1016/j.jmrt.2020.02.052

Mohanraj, S.; Kodhaiyolii, S.; Rengasamy, M.; Pugalenthi, V. Green Synthesized Iron Oxide Nanoparticles Effect on Fermentative Hydrogen Production by Clostridium acetobutylicum. Appl. Biochem. Biotechnol. 2014, 173, 318–331. https://doi.org/10.1007/s12010-014-0843-0

Muhammad, W.; Khan, M. A.; Nazir, M.; Siddiquah, A.; Mushtaq, S.; Hashmi, S. S.; Abbasi, B. H. Papaver somniferum L. mediated novel bioinspired lead oxide (PbO) and iron oxide (Fe2O3) nanoparticles: In-vitro biological applications, biocompatibility and their potential towards HepG2 cell line. Mater. Sci. Eng. C 2019, 103, 109740. https://doi.org/10.1016/j.msec.2019.109740

Mukherjee, P. Stenotrophomonas and Microbacterium: Mediated Biogenesis of Copper, Silver and Iron Nanoparticles—Proteomic Insights and Antibacterial Properties Versus Biofilm Formation. J. Clust. Sci. 2017, 28, 331–358. https://doi.org/10.1007/s10876-016-1097-5

Muthukumar, H.; Matheswaran, M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: Physicochemical traits, photocatalytic and antioxidant activity. ACS Sustainable Chem. Eng. 2015, 3 (12), 3149–3156. https://doi.org/10.1021/acssuschemeng.5b00722

Nagajyothi, P. C.; Pandurangan, M.; Kim, D. H.; Sreekanth, T.; Shim, J. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J. Clust. Sci. 2017, 28, 245–257. https://doi.org/10.1007/s10876-016-1082-z

Nehra, P.; Chauhan, R. P.; Garg, N.; Verma, K. Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br. J. Biomed. Sci. 2018, 75 (1), 13–18. https://doi.org/10.1080/09674845.2017.1347362

Nisticò, R. Magnetic materials and water treatments for a sustainable future. Res. Chem. Intermed. 2017, 43, 6911–6949. https://doi.org/10.1007/s11164-017-3029-x

Nisticò, R.; Tabasso, S.; Magnacca, G.; Jordan, T.; Shalom, M.; Fechler, N. Reactive hypersaline route: One-pot synthesis of porous photoreactive nanocomposites. Langmuir 2017a, 33 (21), 5213–5222. https://doi.org/10.1021/acs.langmuir.7b00142

Nisticò, R.; Scalarone, D.; Magnacca, G. Sol–gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of in organic thin films/coatings. Microporous Mesoporous Mater. 2017b, 248, 18–29. https://doi.org/10.1016/j.micromeso.2017.04.017

Nisticò, R. Block copolymers for designing nanostructured porous coatings. Beilstein J. Nanotechnol. 2018, 9, 2332–2344. https://doi.org/10.3762/bjnano.9.218

Nisticò, R. A synthetic guide toward the tailored production of magnetic iron oxide nanoparticles. Bol. Soc. Esp. Cerám. Vidr. 2021, 60 (1), 29–40. https://doi.org/10.1016/j.bsecv.2020.01.011

Palma, D.; Prevot, A. B.; Brigante, M.; Fabbri, D.; Magnacca, G.; Richard, C.; Mailhot, G.; Nisticò, R. New insights on the photodegradation of caffeine in the presence of bio-based substances-magnetic iron oxide hybrid nanomaterials. Materials 2018, 11 (7), 1084. https://doi.org/10.3390/ma11071084

Pang, Y. L.; Lim, S.; Ong, H. C.; Chong, W. T. Research progress on iron oxide-based magnetic materials: Synthesis technique sand photocatalytic applications. Ceram. Int. 2016, 42 (1) (Part A), 9–34. https://doi.org/10.1016/j.ceramint.2015.08.144

Park, T. J.; Lee, K. G.; Lee, S. Y. Advances in microbial biosynthesis of metal nanoparticles. Appl. Microbiol. Biotechnol. 2016, 100, 521–534. https://doi.org/10.1007/s00253-015-6904-7

Pascu, O.; Carenza, E.; Gich, M.; Estradé, S.; Peiró, F.; Herranz, G.; Roig, A. Surface reactivity of iron oxide nanoparticles by microwave-assisted synthesis; comparison with the thermal decomposition route. J. Phys. Chem. C 2012, 116 (28), 15108–15116. https://doi.org/10.1021/jp303204d

Patra, J. K.; Baek, K.-H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 2014, 417305. https://doi.org/10.1155/2014/417305

Patra, J. K.; Ali, S.; Oh, I.-G.; Baek, K.-H. Proteasome inhibitory, antioxidant, and synergistic antibacterial and anticandidal activity of green biosynthesized magnetic Fe3O4 nanoparticles using the aqueous extract of corn (Zea mays L.) ear leaves. Artif. Cells Nanomed. Biotechnol. 2017, 45 (2), 349–356. https://doi.org/10.3109/21691401.2016.1153484

Patra, J. K.; Baek, K.-H. Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J. Photochem. Photobiol. B, Biol. 2017, 173, 291–300. https://doi.org/10.1016/j.jphotobiol.2017.05.045

Pinkas, J.; Reichlova, V.; Zboril, R.; Moravec, Z., Bezdicka, P.; Matejkova, J. Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason. Sonochem. 2008, 15 (3), 257–264. https://doi.org/10.1016/j.ultsonch.2007.03.009

Poka, L. P., Krishna, M. G., Venkateswara, K. R., Shanker, K. Biosynthesis, characterization and acute oral toxicity studies of synthesized iron oxide nanoparticles using ethanolic extract of Centella asiatica plant. Mater. Lett. 2019, 236, 256–259. https://doi.org/10.1016/j.matlet.2018.10.037

Prabhakar, R.; Samadder, S. R.; Jyotsana. Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation. J. Clean. Prod. 2017, 168, 1201–1210. https://doi.org/10.1016/j.jclepro.2017.09.063

Radini, I. A; Hansan, N.; Malik, M. A.; Khan, Z. Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J. Photochem. Photobiol. B, Biol. 2018, 183, 154–163. https://doi.org/10.1016/j.jphotobiol.2018.04.014

Rahmani, R.; Gharanfoli, M.; Gholamin, M.; Darroudi, M.; Chamani, J.; Sadri, K. Green synthesis of 99mTc-labeled-Fe3O4 nanoparticles using Quince seeds extract and evaluation of their cytotoxicity and biodistribution in rats. J. Mol. Struct. 2019, 1196, 394–402. https://doi.org/10.1016/j.molstruc.2019.06.076

Rahmani, R.; Gharanfoli, M.; Gholamin, M.; Darroudi, M., Chamani, J.; Sadri, K.; Hashemzadeh, A. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram. Int. 2020, 46 (3), 3051–3058. https://doi.org/10.1016/j.ceramint.2019.10.005

Rai, M.; Ingle, A. P.; Gupta, I. R.; Birla, S. S., Yadav, A. P., Abd-Elsalam, K. A. Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications. Curr. Nanosci. 2013, 9 (5), 576–587. https://doi.org/10.2174/15734137113099990092

Rajendran, K.; Karunagaran, V.; Mahanty, B.; Sen, S. Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells. Int. J. Biol. Macromol. 2015, 74, 376–381. https://doi.org/10.1016/j.ijbiomac.2014.12.028

Rajendran, K.; Sen, S. Optimization of process parameters for the rapid biosynthesis of hematite nanoparticles. J. Photochem. Photobiol. B: Biol. 2016, 159, 82–87. https://doi.org/10.1016/j.jphotobiol.2016.03.023

Rajiv, P.; Bavadharani, B.; Kumar, M. N.; Vanathi, P. Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal. Agric. Biotechnol. 2017, 12, 45–49. https://doi.org/10.1016/j.bcab.2017.08.015

Ramesh, A. V.; Devi, D. R.; Botsa, S. M.; Basavaiah, K. Facile green synthesis of Fe3O4 nanoparticles using aqueous leaf extract of Zanthoxylum armatum DC. for efficient adsorption of methylene blue. J. Asian Ceram. Soc. 2018, 6 (2), 145–155. https://doi.org/10.1080/21870764.2018.1459335

Rana, P.; Sharma, S.; Sharma, R.; Banerjee, K. Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Materials Science for Energy Technology 2019, 2 (1), 15–21. https://doi.org/10.1016/j.mset.2018.09.001

Ranmadugala, D.; Ebrahiminezhad, A.; Manley-Harris, M.; Ghasemi, Y.; Berenjian, A. Reduced biofilm formation in Menaquinone-7 production process by optimizing the composition of the cultivation medium. Trends Pharmac. Sci. 2017, 3 (4), 245–254.

Ratna, D., Padhi, B. S. Pollution due to synthetic dyes toxicity and carcinogenicity studies and remediation. International Journal of Environmental Science 2012, 3 (3), 940–955.

Rizwan, W., Farheen, K., Abdulaziz A., Al-Khedhairy, A. Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 2018, 8, 24750–24759. https://doi.org/10.1039/C8RA02613K

Roca, A. G.; Gutiérrez, L.; Gavilán, H.; Fortes Brollo, M. E. F.; Veintemillas-Verdaguer, S.; Morales, M. P. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv. Drug Deliv. Rev. 2019, 138, 68–104. https://doi.org/10.1016/j.addr.2018.12.008

Rufus, A.; Sreeju, N.; Vilas, V.; Philip, D. Biosynthesis of hematite (α-Fe2O3) nanostructures: Size effects on applications in thermal conductivity, catalysis, and antibacterial activity. J. Mol. Liq. 2017, 242, 537–549. https://doi.org/10.1016/j.molliq.2017.07.057

Rufus, A; Sreeju, N.; Philip, D. Size tunable biosynthesis and luminescence quenching of nanostructured hematite (α-Fe2O3) for catalytic degradation of organic pollutants. J. Phys. Chem. Solids 2019, 124, 221–234. https://doi.org/10.1016/j.jpcs.2018.09.026

Ruíz-Baltazar, Á. J.; Reyes-López, S. Y.; Mondragón-Sánchez, M. L.; Robles-Cortés, A. I.; Pérez, R. Eco-friendly synthesis of Fe3O4 nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results Phys. 2019, 12, 989–995. https://doi.org/10.1016/j.rinp.2018.12.037

Saif, S.; Tahir, A.; Chen, Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 2016, 6 (11), 209. https://doi.org/10.3390/nano6110209

Salem, D. M. S. A.; Ismail, M. M.; Aly-Eldeen, M. A. Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt. J. Aquat. Res. 2019, 45 (3), 197–204. https://doi.org/10.1016/j.ejar.2019.07.002

Sathishkumar, G.; Logeshwaran, V.; Sarathbabu, S.; Jha, P. K.; Jeyaraj, M.; Rajkuberan, C.; Senthilkumar, N.; Sivaramakrishnan, S. Green synthesis of magnetic Fe3O4 nanoparticles using Couroupita guianensis Aubl. fruit extract for their antibacterial and cytotoxicity activities. Artif. Cells Nanomed. Biotechnol. 2018, 46 (3), 589–598. https://doi.org/10.1080/21691401.2017.1332635

Sayed, F. N.; Polshettiwar, V. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides. Sci. Rep. 2015, 5, 9733. https://doi.org/10.1038/srep09733

Seabra, A. B.; Pelegrino, M. T.; Haddad, P. S. Antimicrobial Applications of Superparamagnetic Iron Oxide Nanoparticles: Perspectives and Challenges. In Nanostructures for Antimicrobial Therapy; Ficai, A., Grumezescu, A. M., Eds.; Elsevier, 2017; pp 531-550. https://doi.org/10.1016/B978-0-323-46152-8.00024-X

Sharma, D.; Ledwani, L.; Mehrotra, T.; Kumar, N.; Pervaiz, N.; Kumar, R. Biosynthesis of hematite nanoparticles using Rheum emodi and their antimicrobial and anticancerous effects in vitro. J. Photochem. Photobiol. B, Biol. 2020, 206, 111841. https://doi.org/10.1016/j.jphotobiol.2020.111841

Shen, Z.; Wu, A.; Chen, X. Iron oxide nanoparticle-based contrast agents for magnetic resonance imaging. Mol. Pharmaceutics 2017, 14 (5), 1352–1364. https://doi.org/10.1021/acs.molpharmaceut.6b00839

Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34 (7), 588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

Sirdeshpande, K. D.; Sridhar, A.; Cholkar, K. M.; Selvaraj, R. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl. Nanosci. 2018, 8, 675–683. https://doi.org/10.1007/s13204-018-0698-8

Sneha, U.; Karthikeyan, R. Bactericidal activity of ayurvedic formulation against cariogenic microorganisms. Biocatal. Agric. Biotechnol. 2019, 18, 101026. https://doi.org/10.1016/j.bcab.2019.101026

Sorbiun, M.; Mehr, E. S.; Ramazani, A.; Malekzadeh, A. M. Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties. Nanochem. Res. 2018, 3 (1), 1–16.

Stan, M., Popa, A., Toloman, D.; Dehelean, A.; Lung, I.; Katona, G. Enhanced photocatalytic degradation properties of zinc oxide nanoparticles synthesized by using plant extracts. Mater. Sci. Semicond. Process. 2015, 39, 23–29. https://doi.org/10.1016/j.mssp.2015.04.038

Sulaiman, G. M.; Tawfeeq, A. T.; Naji, A. S. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif. Cells Nanomed. Biotechnol. 2018, 46 (6), 1215–1229. https://doi.org/10.1080/21691401.2017.1366335

Sumera, A.; Tahir, M. B.; Iqbal, T.; Liaqat, A.; Abrar, M. Green synthesis and characterization of novel iron particles by using different extracts. J. Alloys Compd. 2018, 732, 935–944. https://doi.org/10.1016/j.jallcom.2017.10.137

Taghizadeh, S.-M.; Berenjian, A., Taghizadeh, S.; Ghasemi, Y.; Taherpour, A.; Sarmah, A. K.; Ebrahiminezhad, A. One-put green synthesis of multifunctional silver iron core-shell nanostructure with antimicrobial and catalytic properties. Ind. Crops Prod. 2019, 130 (2019) 230–236. https://doi.org/10.1016/j.indcrop.2018.12.085

Thandapani, K.; Kathiravan, M.; Namasivayam., E.; Padiksan, I. A.; Natesan, G., Tiwari, M., Giovanni, B., Perumal, V. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ. Sci. Pollut. Res. 2018, 25, 10328-10339. https://doi.org/10.1007/s11356-017-9177-0

Thilagavathi, T.; Renuka, R.; Priya, R. S. Bio-synthesis of silver nanoparticles using Punicagranatum (Pomegranate) peel extract: a novel approach towards waste utilization. Int. J. Adv. Sci. Eng. 2016, 3 (1), 234–236.

Toledo, L. A. S.; Rosseto, H. C.; Bruschi M. L. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharm. Dev. Technol. 2018, 23 (4), 316–323. https://doi.org/10.1080/10837450.2017.1337793

Truskewycz, A.; Shukla, R.; Ball, A. S. Iron nanoparticles synthesized using green tea extracts for the fenton-like degradation of concentrated dye mixtures at elevated temperatures. J. Environ. Chem. Eng. 2016, 4 (4) (Part A), 4409–4417. https://doi.org/10.1016/j.jece.2016.10.008

Vallabani, N. V. S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018, 8, 279. https://doi.org/10.1007/s13205-018-1286-z

Vasantharaj, S.; Sathiyavimal, S.; Senthilkumar, P.; LewisOscar, F.; Pugazhendhi, A. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J. Photochem. Photobiol. B, Biol. 2019, 192, 74–82. https://doi.org/10.1016/j.jphotobiol.2018.12.025

Verma, A.; Mehata, M. S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9 (1), 109–115. https://doi.org/10.1016/j.jrras.2015.11.001

Vitta, Y.; Figueroa, M.; Calderon, M., Ciangherotti, C. Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Materials Science for Energy Technologies 2020, 3, 97–103. https://doi.org/10.1016/j.mset.2019.10.014

Wei, F.; Fang, Z.; Zheng, L.; Tan, L.; Tsang, E. P. Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts. Mater. Lett. 2016, 185, 384–386. https://doi.org/10.1016/j.matlet.2016.09.029

Woźnica, A.; Dzirba, J.; Mańka, D.; Łabuzek, S. Effects of electron transport inhibitors on iron reduction in Aeromonas hydrophila strain KB1. Anaerobe 2003, 9 (3), 125–130. https://doi.org/10.1016/S1075-9964(03)00059-3

Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16 (2), 023501. https://doi.org/10.1088/1468-6996/16/2/023501

Yadav, V. K.; Fulekar, M. H. Biogenic synthesis of maghemite nanoparticles (γ-Fe2O3) using Tridax leaf extract and its application for removal of fly ash heavy metals (Pb, Cd). Mater. Today: Proc. 2018, 5 (9) (Part 3), 20704–20710. https://doi.org/10.1016/j.matpr.2018.06.454

Yazdani, F.; Seddigh, M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater. Chem. Phys. 2016, 184, 318–323. https://doi.org/10.1016/j.matchemphys.2016.09.058

Yew, Y. P.; Shameli, K.; Miyake, M.; Khairudin, N. B. B. A.; Mohamad, S. E. B.; Naiki, T.; Lee, K. X. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 2020, 13 (1), 2287–2308. https://doi.org/10.1016/j.arabjc.2018.04.013

Zhu, M.; Wang, Y.; Meng, D.; Qin, X.; Diao, G. Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J. Phys. Chem. C 2012, 116 (30), 16276–16285. https://doi.org/10.1021/jp304041m