A criticism of the reductionist and holistic vision in the planning of drugs in biological, chemical and physical level
Main Article Content
Abstract
In this work, two philosophical premises of science applied in the understanding of diseases and in the planning of drugs were studied. The first premise is reductionism. This idea is present in modern science when a problem can be reduced to the sum of its individual parts. Diseases can be understood as the metabolic action of few enzymes. Drugs can be planned through the mimicry of a specific enzymatic substrate. Biological molecules can be explained by the quantum theory applied to atoms and molecules. This idea has been the predominant way in modern science. On the other hand, there is a holistic view of the phenomenon. In this holistic view, the phenomenon must be understood as the whole. Drug design should be thought from a network of proteins, not just from a single enzymatic target. There is in fact a slight advantage in the reductionist method, because this philosophical view simplifies the problem. Today, a holistic view combined with methodological reductionism is used to develop new potential drugs.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Abdelgalil, A. A.; Alam, M. A.; Raish, M.; Mohammed, I. E.; Mohammed, A.-E. H.; Ansari, M. A.; Al Jenoobi, F. I. Dasatinib significantly reduced in vivo exposure to cyclosporine in a rat model: The possible involvement of CYP3A induction. Pharmacol. Rep. 2019, 71 (2), 201–205. https://doi.org/10.1016/j.pharep.2018.10.018.
Ahn, A. C.; Tewari, M.; Poon, C.-S.; Phillips, R. S. The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med. 2006, 3 (6), e208. https://doi.org/10.1371/journal.pmed.0030208.
Akhtar, N.; Jabeen, I.; Jalal, N.; Antilla, J. Structure-based pharmacophore models to probe anticancer activity of inhibitors of protein kinase B-beta (PKB β). Chem. Biol. Drug. Des. 2019, 93 (3), 325–336. https://doi.org/10.1111/cbdd.13418.
Albergante, L.; Liu, D.; Palmer, S.; Newman, T. J. Insights into Biological Complexity from Simple Foundations. In Biophysics of Infection: Advances in Experimental Medicine and Biology; Springer, 2016; pp 295–305. https://doi.org/10.1007/978-3-319-32189-9_18.
Alm, E.; Arkin, A. P. Biological networks. Curr. Opin. Struct. Biol. 2003, 13 (2), 193–202. https://doi.org/10.1016/S0959-440X(03)00031-9.
Aucar, M. G.; Cavasotto, C. N. Molecular Docking Using Quantum Mechanical-Based Methods. In Quantum Mechanics in Drug Discovery; Humana, 2020. https://doi.org/10.1007/978-1-0716-0282-9_17.
Berg, E. L. Systems biology in drug discovery and development. Drug Discov. Today 2014, 19 (2), 113–125. https://doi.org/10.1016/j.drudis.2013.10.003.
Bieber, T. Concept and Scientific Background of Personalized Medicine. In Personalized Treatment Options in Dermatology; Springer, 2015; pp 1–5. https://doi.org/10.1007/978-3-662-45840-2_1.
Birkbak, N. J.; McGranahan, N. Cancer Genome Evolutionary Trajectories in Metastasis. Cancer Cell 2020, 37 (1), 8–19. https://doi.org/10.1016/j.ccell.2019.12.004.
Blumberg, J. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study in Finland. Nutr. Rev. 1994, 52 (7), 242–245. https://doi.org/10.1111/j.1753-4887.1994.tb01430.x.
Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. (Berl.) 1927, 389 (20), 457–484. https://doi.org/10.1002/andp.19273892002.
Bosshard, H. R. Molecular Recognition by Induced Fit: How Fit is the Concept? News Physiol. Sci. 2001, 16, 171–173. https://doi.org/10.1152/physiologyonline.2001.16.4.171.
Boveri, T. The Origin of Malignant Tumors; Baillière, Tindall & Cox, 1929.
Brown, N. Bioisosterism in Medicinal Chemistry. In Bioisosteres in Medicinal Chemistry; Wiley-VCH, 2012; pp 1–14. https://doi.org/10.1002/9783527654307.ch1.
Burton, D. R.; Desrosiers, R. C.; Doms, R. W.; Koff, W. C.; Kwong, P. D.; Moore, J. P.; Nabel, G. J.; Sodroski, J.; Wilson, I. A.; Wyatt, R. T. HIV vaccine design and the neutralizing antibody problem. Nat. Immunol. 2004, 5, 233–236. https://doi.org/10.1038/ni0304-233.
Burton, D. R.; Moore, J. P. Why do we not have an HIV vaccine and how can we make one? Nat. Med. 1998, 4, 495–498. https://doi.org/10.1038/nm0598supp-495.
Campillos, M.; Kuhn, M.; Gavin, A.-C.; Jensen, L. J.; Bork, P. Drug target identification using side-effect similarity. Science 2008, 321 (5886), 263–266. https://doi.org/10.1126/science.1158140.
Cardoso, E.; Guidi, M.; Blanchet, B.; Schneider, M. P.; Decosterd, L. A.; Buclin, T.; Csajka, C.; Widmer, N. Therapeutic Drug Monitoring of Targeted Anticancer Protein Kinase Inhibitors in Routine Clinical Use: A Critical Review. Ther. Drug Monit. 2020, 42 (1), 33–44. https://doi.org/10.1097/FTD.0000000000000699.
Cavasotto, C. N.; Aucar, M. G.; Adler, N. S. Computational chemistry in drug lead discovery and design. Int. J. Quantum Chem. 2018, 119 (2), e25678. https://doi.org/10.1002/qua.25678.
Chabner, B. A.; Roberts Junior, T. G. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5 (1), 65–72. https://doi.org/10.1038/nrc1529.
Cheng, F.; Liu, C.; Jiang, J.; Lu, W.; Li, W.; Liu, G.; Zhou, W.; Huang, J. Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference. PLoS Comput. Biol. 2012, 8 (5), e1002503. https://doi.org/10.1371/journal.pcbi.1002503.
Chirita-Emandi, A.; Niculescu, M. Methods for Global Nutrigenomics and Precision Nutrition. In Principles of Nutrigenetics and Nutrigenomics: Fundamentals for Individualized Nutrition; Academic Press, 2020; pp 49–58. https://doi.org/10.1016/B978-0-12-804572-5.00007-0.
Crick, F. Of Molecules and Men; University of Washington Press, 1966.
Davis, C. D.; Hord, N. G. Nutritional “Omics” Technologies for Elucidating the Role(s) of Bioactive Food Components in Colon Cancer Prevention. J. Nutr. 2005, 135 (11), 2694–2697. https://doi.org/10.1093/jn/135.11.2694.
Dirac, P. A. M. Quantum mechanics of many-electron systems. Proc. R. Soc. A 1929, 123 (792), 714–733. https://doi.org/10.1098/rspa.1929.0094.
Dolberg, D. S.; Bissell, M. J. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 1984, 309, 552–556. https://doi.org/10.1038/309552a0.
Drews, J. Strategic trends in the drug industry. Drug Discov. Today 2003, 8 (9), 411–420. https://doi.org/10.1016/S1359-6446(03)02690-4.
Ecker, D. M.; Jones, S. D.; Levine, H. L. The therapeutic monoclonal antibody market. MAbs 2015, 7 (1), 9–14. https://doi.org/10.4161/19420862.2015.989042.
Faratian, D.; Clyde, R. G.; Crawford, J. W.; Harrison, D. J. Systems pathology—taking molecular pathology into a new dimension. Nat. Rev. Clin. Oncol. 2009, 6 (8), 455–464. https://doi.org/10.1038/nrclinonc.2009.102.
Fardet, A. Food health potential is primarily due to its matrix structure, then nutrient composition: a new paradigm for food classification according to technological processes applied. J Nutr. Health Food Eng. 2014, 1 (5), 208-209. https://doi.org/10.15406/jnhfe.2014.01.00031.
Fardet, A.; Rock, E. Toward a New Philosophy of Preventive Nutrition: From a Reductionist to a Holistic Paradigm to Improve Nutritional Recommendations. Adv. Nutr. 2014, 5 (4) 430–446. https://doi.org/10.3945/an.114.006122.
Fojo, T. Commentary: Novel Therapies for Cancer: Why Dirty Might Be Better. Oncologist 2008, 13 (3), 277–283. https://doi.org/10.1634/theoncologist.2007-0090.
Gershell, L. J.; Atkins, J. H. A brief history of novel drug discovery technologies. Nat. Rev. Drug Discov. 2003, 2, 321–327. https://doi.org/10.1038/nrd1064.
Glassman, R. H.; Sun, A. Y. Biotechnology: identifying advances from the hype. Nat. Rev. Drug Discov. 2004, 3, 177–183. https://doi.org/10.1038/nrd1309.
Goh, C.-S.; Milburn, D.; Gerstein, M. Conformational changes associated with protein-protein interactions. Curr. Opin. Struct. Biol. 2004, 14 (1), 104–109. https://doi.org/10.1016/j.sbi.2004.01.005.
Hagios, C.; Lochter, A.; Bissell, M. J. Tissue architecture: the ultimate regulator of epithelial function? Phil. Trans. R. Soc. Lond. B 1998, 353 (1370), 857–870. https://doi.org/10.1098/rstb.1998.0250.
Hanahan, D.; Weinberg, R. A. The Hallmarks of Cancer. Cell 2000, 100 (1), 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9.
Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part II. Some Results and Discussion. Math. Proc. Camb. Philos. Soc. 1928a, 24 (1), 111–132. https://doi.org/10.1017/S0305004100011920.
Hartree, D. R. The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra. Math. Proc. Camb. Philos. Soc. 1928b, 24 (3), 426–437. https://doi.org/10.1017/S0305004100015954.
Horrobin, D. F. Realism in drug discovery–could Cassandra be right? Nat. Biotechnol. 2001, 19, 1099–1100. https://doi.org/10.1038/nbt1201-1099.
James, L. C.; Roversi, P.; Tawfik, D. S. Antibody Multispecificity Mediated by Conformational Diversity. Science 2003, 299 (5611), 1362–1367. https://doi.org/10.1126/science.1079731.
Jemal, A.; Ward, E.; Thun, M. Declining Death Rates Reflect Progress against Cancer. PLoS ONE 2010, 5 (3), e9584. https://doi.org/10.1371/journal.pone.0009584.
Jia, J.; Zhu, F.; Ma, X.; Cao, Z., Cao, Z. W.; Li, Y. X.; Yu, Z. C. Mechanisms of drug combinations: interaction and network perspectives. Nat. Rev. Drug Discov. 2009, 8, 111–128. https://doi.org/10.1038/nrd2683.
Johnson, M. Antibody Structure and Antibody Fragments. Mater. Methods 2013, 3, 160. https://doi.org/10.13070/mm.en.3.160.
Jordan, P.; Fock, V. Neue Unbestimmtheit Eigenschaften des elektromagnetischen Feldes. Z. Physik 1930, 66, 206–209. https://doi.org/10.1007/BF01392901.
Keiser, M. J.; Setola, V.; Irwin, J. J.; Laggner, C.; Abbas, A. I.; Hufeisen, S. J.; Jensen, H. N.; Kuijer, M. B.; Matos, R. C.; Tran, T. B.; Whaley, Glennon, R. A.; Hert, J.; Thomas, K. L. H.; Edwards, D. D.; Shoichet, B. K.; Roth, B. L. Predicting new molecular targets for known drugs. Nature 2009, 462, 175–181. https://doi.org/10.1038/nature08506.
Koshland, D. E. Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci 1958, 44(2), 98–104. https://doi.org/10.1073/pnas.44.2.98.
Krakauer, J. W.; Ghazanfar, A. A.; Gomez-Marin, A.; Maclver, M. A.; Poeppel, D. Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron 2017, 93 (3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041.
Kubinyi, H. Drug research: myths, hype and reality. Nat. Rev. Drug Discov. 2003, 2, 665–668. https://doi.org/10.1038/nrd1156.
Kümmel, H. G. A Biography of the coupled cluster method. In: Recent Progress in Many-Body Theories; World Scientific, 2002; pp 334–348. https://doi.org/10.1142/9789812777843_0040.
Leach, A. R. Molecular Modelling: Principles and Applications; Pearson Education, 2001.
Li, P.; Huang, C.; Fu, Y.; Wang, J.; Wu, Z.; Ru, J.; Zheng, C.; Guo, Z.; Chen, X.; Zhou, W.; Zhang, W.; Li, Y.; Chen, J.; Lu, A.; Wang, Y. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015, 31 (12), 2007–2016. https://doi.org/10.1093/bioinformatics/btv080.
Li, Z.; Han, P.; You, Z.-H.; Li, X.; Zhang, Y.; Yu, H.; Ru, N.; Xing, C. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci. Rep. 2017, 7, 11174. https://doi.org/10.1038/s41598-017-10724-0.
Lok, C. Thinking outside the cell. Nat Biotechnol. 2006, 24, 111–112. https://doi.org/10.1038/nbt0106-111.
Lombardo, L. J.; Lee, F. Y.; Chen, P.; Norris, D.; Barrish, J. C.; Behnia, K.; Castaneda, S.; Cornelius, L. A. M.; Das, J.; Doweyko, A. M.; Fairchild, C.; Hunt, J. T.; Inigo, I.; Johnston, K.; Kamath, A.; Kan, D.; Klei, H.; Marathe, P.; Pang, S.; Peterson, R.; Pitt, S.; Schieven, G. L.; Schmidt, R. J.; Tokarski, J.; Wen, M.-L.; Wityak, J.; Borzilleri, R. M. Discovery of N-(2-Chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a Dual Src/Abl Kinase Inhibitor with Potent Antitumor Activity in Preclinical Assays. J. Med. Chem. 2004, 47 (27), 6658–6661. https://doi.org/10.1021/jm049486a.
Löwdin, P.-O. Quantum Theory of Many-Particle Systems. III. Extension of the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects. Phys. Rev. 1955, 97 (6), 1509-1520. https://doi.org/10.1103/PhysRev.97.1509.
Manley, P. W.; Cowan-Jacob, S. W.; Buchdunger, E.; Fabbro, D.; Fendrich, G.; Furet, P.; Meyer, T.; Zimmermann, J. Imatinib: a selective tyrosine kinase inhibitor. Eur. J. Cancer 2002, 38 (Suppl 5), s19–s27. https://doi.org/10.1016/S0959-8049(02)80599-8.
Menzies, P. Against Causal Reductionism. Mind 1988, 388, 551–574. https://doi.org/10.1093/mind/XCVII.388.551.
Miska, D. Biotech’s twentieth birthday blues. Nat. Rev. Drug Discov. 2003, 2, 231–233. https://doi.org/10.1038/nrd1036.
Müller, J.; Kirschner, R. A.; Geyer, A.; Klebe, G. Conceptual Design of Self-Assembling Bisubstrate-like Inhibitors of Protein Kinase A Resulting in a Boronic Acid Glutamate Linkage. ACS Omega 2019, 4 (1), 775-784. https://doi.org/10.1021/acsomega.8b02364.
National Cancer Institute (NCI). In: Definitions. Qeios, 2018. https://www.cancer.gov/ (accessed 2020-02-21).
Nicholson, D. J. Is the cell really a machine? J. Theor. Biol. 2019, 477, 108–26. https://doi.org/10.1016/j.jtbi.2019.06.002.
Nurse, P. The ends of understanding. Nature 1997, 387 (6634), 657. https://doi.org/10.1038/42600.
O’Sullivan, A.; Henrick, B.; Dixon, B.; Barile, D.; Zivkovic, A.; Smilowitz, J.; Lemay, D.; Martin, W.; German, J. B.; Schaefer, S. E. 21st century toolkit for optimizing population health through precision nutrition. Crit. Rev. Food Sci. Nutr. 2018, 58 (17), 3004–3015. https://doi.org/10.1080/10408398.2017.1348335.
Omenn, G. S.; Goodman, G. E.; Thornquist, M. D.; Balmes, J.; Cullen, M. R.; Glass, A.; Keogh, J. P.; Meyskens Junior, F. L.; Valanis, B.; Williams Junior, J. M.; Barnhart, S.; Cherniack, M. G.; Brodkin, C. A.; Hammar, S. Risk Factors for Lung Cancer and for Intervention Effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J. Natl. Cancer Inst. 1996, 88 (21), 1550–1559. https://doi.org/10.1093/jnci/88.21.1550.
Pal, R.; Berlow, N. A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs. Pacific Symp. Biocomput. 2012, 351–362. https://doi.org/10.1142/9789814366496_0034.
Patani, G. A.; LaVoie, E. J. Bioisosterism: A Rational Approach in Drug Design. Chem. Rev. 1996, 96 (8), 3147–3176. https://doi.org/10.1021/cr950066q.
Peterson, R. T. Chemical biology and the limits of reductionism. Nat. Chem. Biol. 2008, 4 (11), 635–638. https://doi.org/10.1038/nchembio1108-635.
Phua, S.-X.; Chan, K.-F.; Su, C. T.-T.; Poh, J.-J.; Gan, S. K.-E. Perspective: The promises of a holistic view of proteins—impact on antibody engineering and drug discovery. Biosci. Rep. 2019, 39 (1), BSR20181958. https://doi.org/10.1042/BSR20181958.
Pierce Junior, G. B.; Dixon Junior, F. J.; Verney, E. L. Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest. 1960, 9, 583–602.
Pigliucci, M.; Kaplan, J. Making Sense of Evolution: The Conceptual Foundations of Evolutionary Biology; University of Chicago Press, 2010.
Ponting, C. P.; Russell, R. R. The natural history of protein domains. Annu. Rev. Biophys. Biomol. Struct. 2002, 31, 45–71. https://doi.org/10.1146/annurev.biophys.31.082901.134314.
Ramasarma, T. One protein - Many functions. Curr. Sci. 1994, 67 (1), 24-29.
Rietjens, I. M. C. M.; Boersma, M. G.; de Haan, L.; Spenkelink, B.; Awad, H. M.; Cnubben, N. H. P.; van Zanden, J. J.; van der Woude, H.; Alink, G. M.; Koeman, J. H. The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ. Toxicol. Pharmacol. 2002, 11 (3-4), 321–333. https://doi.org/10.1016/S1382-6689(02)00003-0.
Roothaan, C. C. J. New Developments in Molecular Orbital Theory. Rev. Mod. Phys. 1951, 23 (2), 69–89. https://doi.org/10.1103/RevModPhys.23.69.
Ryall, K. A.; Tan, A. C. Systems biology approaches for advancing the discovery of effective drug combinations. J. Cheminform. 2015, 7, 7. https://doi.org/10.1186/s13321-015-0055-9.
Schechter, A. N. Hemoglobin research and the origins of molecular medicine. Blood 2008, 112 (10), 3927–3938. https://doi.org/10.1182/blood-2008-04-078188.
Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28(6), 1049–1070. https://doi.org/10.1103/PhysRev.28.1049.
Schrödinger, E. What is Life? J. Philos. 1946, 43 (7), 194-195. https://doi.org/10.2307/2019342.
Shah, P.; Dylgjeri, F.; Srinivasan, B.; Brennan, P. A. Oral tyrosine kinase inhibitors in OMFS: a review. J. Oral Maxillofac. Surg. 2020, 58 (2), 135–138. https://doi.org/10.1016/j.bjoms.2019.11.022.
Shavitt, I.; Bartlett, R. J. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory; Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511596834.
Sobie, E. A.; Lee, Y.-S.; Jenkins, S. L.; Iyengar, R. Systems Biology—Biomedical Modeling. Sci. Signal 2011, 4 (190), tr2. https://doi.org/10.1126/scisignal.2001989.
Sonnenschein, C.; Soto, A. M. Over a century of cancer research: Inconvenient truths and promising leads. PLoS Biol. 2020, 18 (4), e3000670. https://doi.org/10.1371/journal.pbio.3000670.
Soto, A. M.; Sonnenschein, C. Emergentism as a default: Cancer as a problem of tissue organization. J. Biosci. 2005, 30 (1), 103–118. https://doi.org/10.1007/BF02705155.
van der Spoel, D. Systematic design of biomolecular force fields. Curr. Opin. Struct. Biol. 2021, 67, 18-24. https://doi.org/10.1016/j.sbi.2020.08.006.
van Ommen, B.; Cavallieri, D.; Roche, H. M.; Klein, U. I.; Daniel, H. The challenges for molecular nutrition research 4: the “nutritional systems biology level”. Genes Nutr. 2008, 3, 107–113. https://doi.org/10.1007/s12263-008-0090-5.
Van Regenmortel, M. H. V. Are there two distinct research strategies for developing biologically active molecules: rational design and empirical selection? J. Mol. Recognit. 2000, 13 (1), 1–4. https://doi.org/10.1002/(SICI)1099-1352(200001/02)13:1%3C1::AID-JMR490%3E3.0.CO;2-W.
Van Regenmortel, M. H. V. Pitfalls of reductionism in the design of peptide-based vaccines. Vaccine 2001, 19 (17–19), 2369-2374. https://doi.org/10.1016/S0264-410X(00)00456-4.
Van Regenmortel, M. H. V. Reductionism and complexity in molecular biology. Scientists now have the tools to unravel biological and overcome the limitations of reductionism. EMBO Rep. 2004, 5 (11), 1016–1020. https://doi.org/10.1038/sj.embor.7400284.
Van Regenmortel, M. H. V. Reductionism and the search for structure-function relationships in antibody molecules. J. Mol. Recognit. 2002, 15 (5), 240–247. https://doi.org/10.1002/jmr.584.
Van Regenmortel, M. H. V. What does it mean to develop an HIV vaccine by rational design? Arch. Virol. 2021, 166, 27–33. https://doi.org/10.1007/s00705-020-04884-0.
Waddington, C. H. Cancer and the Theory of Organisers. Nature 1935, 135, 606–608. https://doi.org/10.1038/135606a0.
Weinberg, R. A. One Renegade Cell: The Quest for the Origins of Cancer; Weidenfeld and Nicolson: Science Masters, 1998.
Weinstock, G. M. Genomic approaches to studying the human microbiota. Nature 2012, 489 (7415), 250–256. https://doi.org/10.1038/nature11553.
Woolley, R. G. Must a molecule have a shape? J. Am. Chem. Soc. 1978, 100 (4), 1073–1078. https://doi.org/10.1021/ja00472a009.
Zalta, E. N.; Nodelman, U.; Allen, C.; Anderson. R. L. Reductionism in Biology. Stanford Encyclopedia of Philosophy, 2017. https://plato.stanford.edu/entries/reduction-biology/ (accessed 2021-04-21).
Zhong, Z.; Virshup, D. M. Wnt Signaling and Drug Resistance in Cancer. Mol. Pharmacol. 2020, 97 (2), 72–89. https://doi.org/10.1124/mol.119.117978.