Heterogeneous photodegradation of bisphenol A and ecotoxicological evaluation post treatment

Main Article Content

Bianca Veloso Goulart
Patrícia Maralyne Lopes Lisboa Fagundes
Amanda Rosa Peres
Alessandra Carolina da Costa
Ana Lúcia Fonseca
Márcia Matiko Kondo
Sandro José de Andrade

Abstract

Bisphenol A (BPA) is an emerging pollutant with endocrine disrupting properties that can be found at trace levels in various aqueous environments. Conventional water and wastewater treatments are not designed to efficiently remove these substances. Therefore, this work investigates the removal of BPA by an Advanced Oxidation Process (AOP), specifically heterogeneous photocatalysis using TiO2. The influences of the TiO2 concentration (1.0–10.0 mg L-1), pH (5.3 and 8.5) and effects matrix composition were studied for the removal of BPA at a concentration of 0.8 mg L-1. The results indicated that BPA was completely removed after 45 min of treatment using 7.5 and 10 mg L-1 of TiO2, under constant aeration and artificial UV irradiation, at the different pH values. The use of solar radiation as an UV source was also effective, removing BPA after 60 min of irradiation at pH without adjustment, as well as at pH 8.5. Ecotoxicological evaluation indicated that the post-treatment samples did not present acute effects towards Daphnia similis. Evaluation of chronic toxicity with Raphidocelis subcapitata showed that there was a reduction in the negative effect of BPA under the growth rate of algae biomass after 60 min of treatment, compared to the initial sample.

Metrics

Metrics Loading ...

Article Details

How to Cite
Goulart, B. V., Fagundes, P. M. L. L., Peres, A. R., da Costa, A. C., Fonseca, A. L., Kondo, M. M., & de Andrade, S. J. (2021). Heterogeneous photodegradation of bisphenol A and ecotoxicological evaluation post treatment. Eclética Química, 46(2), 48–56. https://doi.org/10.26850/1678-4618eqj.v46.2.2021.p48-56
Section
Original articles

References

Brieño-Enríquez, M. A., Larriba, E., Del Mazo, J., Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail, Fertility and Sterility 106 (4) (2016) 871-879. https://doi.org/10.1016/j.fertnstert.2016.07.1100.

Sifakis, S., Androutsopoulos, V. P., Tsatsakisc, A. M., Spandidos, D. A., Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems, Environmental Toxicology and Pharmacology 51 (2017) 56-70. https://doi.org/10.1016/j.etap.2017.02.024.

Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F., Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation, New Biotechnology 32 (1) (2015) 147-156. https://doi.org/10.1016/j.nbt.2014.01.001.

Montagner, C. C., Vidal, C., Acayaba, R. D., Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios, Química Nova 40 (9) (2017) 1094-1110. https://doi.org/10.21577/0100-4042.20170091.

Michałowicz, J., Bisphenol A – Sources, toxicity and biotransformation, Environmental Toxicology and Pharmacology 37 (2) (2014) 738-758. https://doi.org/10.1016/j.etap.2014.02.003.

CISION. Global BPA Production to Exceed 5.4 Mln Tonnes by 2015, According to In-demand Report by Merchant Research & Consulting. CISION, London, 2014. http://www.prweb.com/releases/2014/04/prweb11761146.htm.

Eladak, S., Grisin, T., Moison, D., Guerquin, M.-J., N'Tumba-Byn, T., Pozzi-Gaudin, S., Benachi, A., Livera, G., Rouiller-Fabre, V., Habert, R., A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound, Fertility and Sterility 103 (1) (2015) 11-21. https://doi.org/10.1016/j.fertnstert.2014.11.005.

Konieczna, A., Rutkowska, A., Rachoń, D., Health risk of exposure to bisphenol a (BPA), Roczniki Państwowego Zakładu Higieny 66 (1) (2015) 5-11.

Reddy, P. V. L., Kim, K.-H., Kavitha, B., Kumar, V., Raza, N., Kalagara, S., Photocatalytic degradation of bisphenol A in aqueous media: A review, Journal of Environmental Management 213 (2018) 189-205. https://doi.org/10.1016/j.jenvman.2018.02.059.

Jardim, W. F., Montagner, C. C., Pescara, I. C., Umbuzeiro, G. A., Bergamasco, A. M. D. D., Eldridge, M. L., Sodré, F. F., An integrated approach to evaluate emerging contaminants in drinking water, Sep. Purif. Technol. 84 (2012) 3-8. https://doi.org/10.1016/j.seppur.2011.06.020.

Abo, R., Kummer, N.-A., Merkel, B. J., Optimized photodegradation of Bisphenol A in water using ZnO, TiO2 and SnO2 photocatalysts under UV radiation as a decontamination procedure, Drink Water Engineering Science 9 (2) (2016) 27-35. https://doi.org/10.5194/dwes-9-27-2016.

Oller, I., Malato, S., Sánchez-Pérez, J. A., Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination – A review, Science of The Total Environment 409 (20) (2011) 4141-4166. https://doi.org/10.1016/j.scitotenv.2010.08.061.

Kondo, M. M., Moraes, R. G. M., Andrade, S. J. de, Silva, M. R. A. da, Processos fenton e foto-fenton no tratamento de águas residuárias dos frutos do cafeeiro, Coffee Science 9 (4) (2014) 506-515. http://www.sbicafe.ufv.br/handle/123456789/8076.

Deng, Y., Zhao, R., Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Current Pollution Reports 1 (3) (2015) 167-176. https://doi.org/10.1007/s40726-015-0015-z.

Kondo, M. M., Jardim, W. F., Photodegradation of chloroform and urea using Ag-loaded titanium dioxide as catalyst, Water Research 25 (7) (1991) 823-827. https://doi.org/10.1016/0043-1354(91)90162-J.

Nogueira, R. F. P., Jardim, W. F., A Fotocatálise Heterogênea e sua aplicação ambiental, Química Nova 21 (1) (1998) 69-72. https://doi.org/10.1590/S0100-40421998000100011.

Van Doorslaer, X., Haylamicheal, I. D., Dewulf, J., Van Langenhove, H., Janssen, C. R., Demeestere, K., Heterogeneous photocatalysis of moxifloxacin in water: Chemical transformation and ecotoxicity, Chemosphere 119 (Suppl.) (2015) S75-S80. https://doi.org/10.1016/j.chemosphere.2014.03.048.

Ribeiro, A. R., Nunes, O. C., Pereira, M. F. P., Silva, A. M. T., An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environment International 75 (2015) 33-51. https://doi.org/10.1016/j.envint.2014.10.027.

Ribani, M., Bottoli, C. B. G., Collins, C. H., Jardim, I. C. S. F., Melo, L. F. C., Validação em métodos cromatográficos e eletroforéticos, Química Nova 27 (5) (2004) 771-780. https://doi.org/10.1590/S0100-40422004000500017.

Associação Brasileira de Normas Técnicas (ABNT). NBR 12713/2016) - Aquatic ecotoxicology. Acute toxicity – test with Daphnia spp (Cladocera. Crustacea).

Hamilton, M. A., Russo, R. C., Thurston, R. V., Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays, Environmental Science & Technology 11 (7) (1977) 714-719. https://doi.org/10.1021/es60130a004.

Associação Brasileira de Normas Técnicas (ABNT). NBR 12648/2011 - Aquatic ecotoxicology. Chronic toxicity - test with green algae (Chlorophyceae).

Corrales, J., Kristofco, L. A., Steele, W. B., Yates, B.S., Breed, C.S., Williams, E. S., Brooks, B. W., Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation, Dose-Response 13 (2015) 1-29. https://doi.org/10.1177/1559325815598308.

Silva, J. C. C. da, Teodoro, J. A. R., Afonso, R. J. de C. F., Aquino, S. F., Augusti, R., Photodegradation of bisphenol A in aqueous medium: Monitoring and identification of by-products by liquid chromatography coupled to high-resolution mass spectrometry, Rapid Communications in Mass Spectrometry 28 (9) (2014) 987-994. https://doi.org/10.1002/rcm.6863.

Repousi, V., Petala, A., Frontistis, Z., Antonopoulou, M., Konstantinou, I., Kondarides, D. I., Mantzavinos, D., Photocatalytic degradation of bisphenol A over Rh/TiO2 suspensions in different water matrices, Catalysis Today 284 (2017) 59-66. https://doi.org/10.1016/j.cattod.2016.10.021.

Teixeira, C. P. A. B., Jardim, W. F., Advanced Oxidation Process - Theoretical Concepts. Thematic Notebook, 3. Unicamp, Campinas, 2004.

Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., Ohta, K., Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide, Journal of Photochemistry and Photobiology A: Chemistry 163 (3) (2004) 419-424. https://doi.org/10.1016/j.jphotochem.2004.01.012.

Tsai, W.-T., Lee, M.-K., Su, T.-Y., Chang, Y.-M., Photodegradation of bisphenol-A in a batch TiO2 suspension reactor, Journal of Hazardous Materials 168 (1) (2009) 269-275. https://doi.org/10.1016/j.jhazmat.2009.02.034.

Legrini, O., Oliveros, E., Braun, M., Photochemical processes for water treatment, Chemical Reviews 93 (2) (1993) 671-698. https://doi.org/10.1021/cr00018a003.

Erjavec, B., Hudoklin, P., Perc, K., Tišlera, T., Dolenc, M. S., Pintar, A., Glass fiber-supported TiO2 photocatalyst: Efficient mineralization and removal of toxicity/estrogenicity of bisphenol A and its analogs, Applied Catalysis B: Environmental 183 (2016) 149-158. https://doi.org/10.1016/j.apcatb.2015.10.033.

Candido, J. P., Andrade, S. J., Fonseca, A. L., Silva, F. S., Silva, M. R. A., Kondo, M. M., Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions, Environmental Science and Pollution Research 23 (19) (2016) 19911-19920. https://doi.org/10.1007/s11356-016-6947-z.