Phytochemical and antibacterial investigation of Moringa oleifera seed: experimental and computational approaches

Main Article Content

Sunday Adewale Akintelu
Aderonke Similoluwa Folorunso
Abel Kolawole Oyebamiji

Abstract

The advent of antibiotic resistance and the growth of new strains of bacteria are of great concern to the world health sectors. Effective treatment of the infections caused by these human pathogens call for designing and development of new drugs with better efficiency. This study aimed at investigating the antibacterial activity of Moringa oleifera seed extract against some bacteria strains. The phytochemical and antibacterial activities of Moringa oleifera seed extract against both Gram-positive and Gram-negative bacteria were conducted using standard methods. The phytochemical analysis of the studied seed extract revealed the presence of alkaloids, tannins, saponins, phenols and flavonoids as secondary metabolites. The obtained result from the antibacterial study indicated that the extract exhibited high inhibition zones against all bacteria strain studied. Also, four molecular compounds from Moringa oleifera seed were selected based on their percentage yield and were optimized using density functional theory and they were used against five bacterial cell lines. It was observed that kaempferol and quercetin inhibited Escherichia coli. Kaempferol inhibited Klebsiella pneumonia, Pseudomonas aeruginosa, and Streptococcus pneumonia while Quercetin showed highest inhibition against Staphylococcus aureus when compared with other compounds. This showed the effectiveness of Moringa oleifera seed in eradicating some infections caused by bacteria.

Metrics

Metrics Loading ...

Article Details

How to Cite
Akintelu, S. A., Folorunso, A. S., & Oyebamiji, A. K. (2021). Phytochemical and antibacterial investigation of Moringa oleifera seed: experimental and computational approaches. Eclética Química, 46(2), 17–25. https://doi.org/10.26850/1678-4618eqj.v46.2.2021.p17-25
Section
Original articles

References

Bhatia, R., Narain, J. P., The growing challenge of antimicrobial resistance in the South-East Asia Region - are we losing the battle? Indian Journal of Medical Research 132 (5) (2010) 482-486.

El-Wafa, W. M. A., El-All, W. S. M. A., Effect of Moringa oleifera Seed Oil on Antimicrobial Activity of some Antibiotics against some Pathogenic Gram-Negative Bacteria, International Journal of Current Microbiology and Applied Sciences 4 (5) (2015) 140-151.

Apetroaie-Constantin, C., Mikkola, R., Andersson, M. A., Teplova, V., Suominen, I., Johansson, T., Salkinoja-Salonen, M., Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin, Journal of Applied Microbiology 106 (6) (2009) 1976-1985. https://doi.org/10.1111/j.1365-2672.2009.04167.x.

Karch, H., Tarr, P. I., Bielaszewska, M., Enterohaemorrhagic Escherichia coli in human medicine, International Journal of Medical Microbiology 295 (6-7) (2006) 405-418. https://doi.org/10.1016/j.ijmm.2005.06.009.

Fazli, M., Bjarnsholt, T., Kirketerp-Møller, K., Jørgensen, A., Andersen, C., Givskov, M., Tolker-Nielsen, T., Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds, Wound Repair and Regeneration 19 (3) (2011) 387-391. https://doi.org/10.1111/j.1524-475X.2011.00681.x.

Last, J. M., A Dictionary of Epidemiology, Oxford University Press, Oxford, 1998.

Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., Scheld, M., Spellberg, B., Bartlett, J., Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America, Clinical Infectious Diseases 48 (1) (2009) 1-12. https://doi.org/10.1086/595011.

Giamarellou, H., Multidrug-resistant Gram-negative bacteria: how to treat and for how long, International Journal of Antimicrobial Agents 36 (Suppl 2) (2010) S50-S54. https://doi.org/10.1016/j.ijantimicag.2010.11.014.

Coates, A., Hu, Y., Bax, R., Page, C., The future challenges facing the development of new antimicrobial drugs, Nature Reviews Drug Discovery 1 (11) (2002) 895-910. https://doi.org/10.1038/nrd940.

Marasini, B. P., Baral, P., Aryal, P., Ghimire, K. R., Neupane, S., Dahal, N., Singh, A., Ghimire, L., Shrestha, K., Evaluation of Antibacterial Activity of Some Traditionally Used Medicinal Plants against Human Pathogenic Bacteria, BioMed Research International 2015 (2015) 265425. https://doi.org/10.1155/2015/265425.

Kumar, V., Pandey, N., Mohan, N., Singh, R. P., Antibacterial & antioxidant activity of different extract of Moringa oleifera leaves - an in vitro study, International Journal of Pharmaceutical Sciences Review and Research 12 (1) (2012) 14. https://globalresearchonline.net/journalcontents/v12-1/014.pdf.

Rani, N. Z. A., Husain, K., Kumolosasi, E., Moringa Genus: A Review of Phytochemistry and Pharmacology, Frontiers in Pharmacology 9 (2018) 108. https://doi.org/10.3389/fphar.2018.00108.

Wang, L., Chen, X., Wu, A., Mini Review on Antimicrobial Activity and Bioactive Compounds of Moringa oleifera, Medicinal Chemistry 6 (9) (2016) 578-582. https://doi.org/10.4172/2161-0444.1000402.

Oyebamiji, K. A., Semire, B., Studies Of 1, 4-Dihydropyridine Derivatives for Anti-Breast Cancer (MCF-7) Activities: Combinations Of DFT-QSAR And Docking Methods, New York Science Journal 9 (6) (2016) 58-66.

Taylor, R. D., Jewsbury, P. J., Essex, J. W., A review of protein-small molecule docking methods, Journal of Computer-Aided Molecular Design 16 (3) (2002) 151-166. https://doi.org/10.1023/A:1020155510718.

Duman, R., Ishikawa, S., Celik, I., Strahl, H., Ogasawara, N., Troc, P., Lowe, J., Hamoen, L. W., Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring, PNAS 110 (48) (2013) E4601. https://doi.org/10.1073/pnas.1313978110.

Onuah, C. L., Chukwuma, C. C., Ohanador, R., Chukwu, C. N., Iruolagbe, J., Quantitative Phytochemical Analysis of Annona muricata and Artocarpus heterophyllus Leaves Using Gas Chromatography-flame Ionization Detector, Trends in Applied Sciences Research 14 (2) (2019) 113-118. https://doi.org/10.3923/tasr.2019.113.118.

Sun, J., Liang, F., Bin, Y., Li, P., Duan, C., Screening Non-colored Phenolics in Red Wines using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries, Molecules 12 (3) (2007) 679-693. https://doi.org/10.3390/12030679.

Ablajan, K., Tuoheti, A., Fragmentation characteristics and isomeric differentiation of flavonol O‐rhamnosides using negative ion electrospray ionization tandem mass spectrometry, Rapid Communications in Mass Spectrometry 27 (3) (2013) 451-460. https://doi.org/10.1002/rcm.6476.

Saldanha, L. L., Vilegas, W., Dokkedal, A. L., Characterization of Flavonoids and Phenolic Acids in Myrcia bella Cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS Combined with NMR, Molecules 18 (7) (2013) 8402-8416. https://doi.org/10.3390/molecules18078402.

Oyebamiji, A. K., Akintelu, S. A., Folorunso, A. S., Abiola, B. E., Ajayi, S. O., Abdusalam, I. O., Morakinyo, A. E., Computational and Experimental Studies on Antimicrobial Activity of the Bark of Annona muricata against Some Selected Human Pathogenic Bacteria and Fungi, International Journal of Modern Chemistry 11 (1) (2019) 9-27.

Colle, J. G., Fraser, A. G., Marmion, B. P., Simmans, A., Mackie, McCartney, Practical Medical Microbiology, Elsevier, Amsterdam, 1996.

Folorunso, A., Akintelu, S., Oyebamiji, A. K., Ajayi. S., Abiola, B., Abdusalam, I., Morakinyo, A., Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata, Journal of Nanostructure in Chemistry 9 (2019) 111-117. https://doi.org/10.1007/s40097-019-0301-1.

Sivanathan, V., Allen, M. D., Bekker, C., Baker, R., Arciszewska, L. K., Freund, S. M., Bycroft, M., Löwe, J., Sherratt, D. J., The FtsK γ domain directs oriented DNA translocation by interacting with KOPS, Nature Structural & Molecular Biology 13 (2006) 965-972. https://doi.org/10.1038/nsmb1158.

Luo, S.-C., Lou, Y.-C., Cheng, H.-Y., Pan, Y.-R., Peng, H.-L., Chen, C., Solution structure and phospho-PmrA recognition mode of PmrD from Klebsiella pneumonia, Journal of Structural Biology 172 (3) (2010) 319-330. https://doi.org/10.1016/j.jsb.2010.06.007.

Heaslet, H., Harris, M., Fahnoe, K., Sarver, R., Putz, H., Chang, J., Subramanyam, C., Barreiro, G., Miller, J. R., Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim, Proteins: Structure, Function, and Bioinformatics 76 (3) (2009) 706-717. https://doi.org/10.1002/prot.22383.

Xia, T.-H., Bushweller, J.-H., Sodano, P., Billeter, M., Bjornberg, O., Holmgren, A., Wüthrich, K., NMR structure of oxidized Escherichia coli glutaredoxin: Comparison with reduced E. coli glutaredoxin and functionally related proteins, Protein Science 1 (3) (1992) 310-321. https://doi.org/10.1002/pro.5560010302.

Achila, D., Liu, A., Banerjee, R., Li, Y., Martinez-Hackert, E., Zhang, J.-R., Yan, H., Structural determinants of host specificity of complement Factor H recruitment by Streptococcus pneumoniae, Biochemical Journal 465 (2) (2015) 325-335. https://doi.org/10.1042/BJ20141069.

Marrufo, T., Nazzaro, F., Mancini, E., Fratianni, F., Coppola, R., de Martino, L., Agostinho, A. B., de Feo, V., Chemical Composition and Biological Activity of the Essential Oil from Leaves of Moringa oleifera Lam. Cultivated in Mozambique, Molecules 18 (9) (2013) 10989-11000. https://doi.org/10.3390/molecules180910989.

Lewis, K., Ausubel, F. M., Prospects for plant-derived antibacterials, Nature Biotechnology 24 (12) (2006) 1504-1507. https://doi.org/10.1038/nbt1206-1504.

Yu, T., Yamaguchi, H., Noshita, T., Kidachi, Y., Umetsu, H., Ryoyama, K., Selective cytotoxicity of glycyrrhetinic acid against tumorigenic r/m HM-SFME-1 cells: Potential involvement of H-Ras downregulation, Toxicology Letters 192 (3) (2010) 425-430. https://doi.org/10.1016/j.toxlet.2009.11.021.

Cushnie, T. P. T., Lamb, A. J., Antimicrobial activity of flavonoids, International Journal of Antimicrobial Agents 26 (5) (2005) 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002.

Emiru, Y. K., Siraj, E. A., Teklehaimanot, T. T., Amare, G. G., Antibacterial Potential of Aloe weloensis (Aloeacea) Leaf Latex against Gram-Positive and Gram-Negative Bacteria Strains, International Journal of Microbiology 2019 (2019) 5328238. https://doi.org/10.1155/2019/5328238.

Manandhar, S., Luitel, M., Dahal, R. K., In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria, Journal of Tropical Medicine 2019 (2019) 1895340. https://doi.org/10.1155/2019/1895340.

Oyebamiji, A. K., Oyedeji, F. O., Adejoro, I. A., Adeleke, B. B., Computational Studies of Some Hydrazone Derivatives as Antibacterial Agent: DFT and Docking Methods, The journal of Pure and Applied Chemistry Research 8 (1) (2019) 1-6. https://doi.org/10.21776/ub.jpacr.2019.008.1.433.

Adejoro, I. A., Waheed, S. O., Adeboye, O. O., Molecular Docking Studies of Lonchocarpus cyanescens Triterpenoids as Inhibitors for Malaria, Journal of Physical Chemistry & Biophysics 6 (2) (2016) 1000213. https://doi.org/10.4172/2161-0398.1000213.