Ultrasound-assisted extraction for the determination of α-linolenic and linoleic acid in vegetable oils by high performance liquid chromatography
Main Article Content
Abstract
The present research consisted in determining α-linolenic acid (ALA, ω-3) and linoleic acid (LA, ω-6) in vegetable oils with ultrasound-assisted extraction. The analytical method was validated by high performance liquid chromatography (HPLC) for the quantification of both polyunsaturated fatty acids (PUFA). The determination was made at a wavelength of 205 nm, mobile phase composed of acetonitrile: methanol: acetic acid 1% (85:5:10), with a flow of 1 mL min-1 and during 5 min. The calibration graph data (50 to 300 mg L-1) adjusted to the linear regression model with a coefficient of determination (R2) of 0.99914 and 0.99986 for ALA and LA, respectively. The repeatability, reproducibility, accuracy and percentage of recovery complied with international guidelines for analytical methods. The proposed method is simple, fast, linear, precise and accurate for the quantitative determination of ALA and LA in vegetable oils. The previous ultrasound application during 10 min achieves significantly higher concentrations (p < 0.05) when ultrasound is not applied. In conclusion, the present method can serve as a useful alternative for routine determinations of ALA and LA in vegetable oils, as it proved to be an easy, fast and reliable method.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Ratnayake, W. M. N., Galli, C., Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper, Annals of Nutrition and Metabolism 55 (1–3) (2009) 8-43. https://doi.org/10.1159/000228994.
Rahmawaty, S., Meyer, B. J., Stunting Is a recognised problem: Evidence for the potential benefits of ω-3 long chain polyunsaturated fatty acids, Nutrition 73 (2020) 110564. https://doi.org/10.1016/j.nut.2019.110564.
Katdare, A., Thakkar, S., Dhepale, S., Khunt, D., Misra, M., Fatty acids as essential adjuvants to treat various ailments and their role in drug delivery: A review, Nutrition 65 (2019) 138-157. https://doi.org/10.1016/j.nut.2019.03.008.
Ouyang, W.-C., Sun, G.-C., Hsu, M.-C., Omega-3 fatty acids in cause, prevention and management of violence in schizophrenia: conceptualization and application, Aggression and Violent Behavior 50 (2020) 101347. https://doi.org/10.1016/j.avb.2019.101347.
Steensels, S., Ersoy, B. A., Fatty Acid Activation in Thermogenic Adipose Tissue, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1864 (1) (2019) 79-90. https://doi.org/10.1016/j.bbalip.2018.05.008.
Smith, G. I., Polyunsaturated Omega-3 Fatty Acids and Skeletal Muscle, In: Nutrition and Skeletal Muscle, Walrand, S., ed., Academic Press, Oxford, 2019, p. 379-392. https://doi.org/10.1016/B978-0-12-810422-4.00022-1.
Punia, S., Sandhu, K. S., Siroha, A. K., Dhull, S. B., Omega 3-metabolism, absorption, bioavailability and health benefits–A review, PharmaNutrition 10 (2019) 100162. https://doi.org/10.1016/j.phanu.2019.100162.
Wahle, K. W. J., Heys, S. D., Rotondo, D., 12 - Authorised EU Health Claims for the Essential Fatty Acids: N-6 Linoleic (18:2n-6) and n-3 α-Linolenic (18:3n-3) Acids. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims: Vol. 2, Sadler, M. J., ed., Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, Oxford, 2015, p. 219-236. https://doi.org/10.1016/B978-1-78242-382-9.00012-8.
Anez-Bustillos, L., Dao, D. T., Fell, G. L., Baker, M. A., Gura, K. M., Bistrian, B. R., Puder, M., Redefining essential fatty acids in the era of novel intravenous lipid emulsions, Clinical Nutrition 37 (3) (2018) 784-789. https://doi.org/10.1016/j.clnu.2017.07.004.
Tsimidou, M., Blekas, G., Boskou, D., OLIVE OIL. In Encyclopedia of Food Sciences and Nutrition (Second Edition), Caballero, B., Ed., Academic Press, Oxford, 2003, p. 4252-4260. https://doi.org/10.1016/B0-12-227055-X/01347-X.
Shahidi, F., Ambigaipalan, P., Omega-3 Fatty Acids, In: Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., eds., Academic Press, Oxford, 2019, p. 465-471. https://doi.org/10.1016/B978-0-08-100596-5.21753-8.
Hodgson, J. M., Mori, T. A., Wahlqvist, M. L., FATTY ACIDS | Omega-6 Polyunsaturated, In: Encyclopedia of Human Nutrition (Second Edition), Caballero, B., ed., Elsevier, Amsterdam, 2005, p. 219-224. https://doi.org/10.1016/B0-12-226694-3/00119-8.
Adu, O. B., Fajana, O. O., Ogunrinola, O. O., Okonkwo, U. V., Evuarherhe, P., Elemo, B. O., Effect of continuous usage on the natural antioxidants of vegetable oils during deep-fat frying, Scientific African 5 (2019) e00144. https://doi.org/10.1016/j.sciaf.2019.e00144.
Tu, T. H., Kim, H., Yang, S., Kim, J. K., Kim, J. G., Linoleic acid rescues microglia inflammation triggered by saturated fatty acid, Biochemical and Biophysical Research Communications 513 (1) (2019) 201-206. https://doi.org/10.1016/j.bbrc.2019.03.047.
Santos, C., Weaver, D. F., Topically applied linoleic/linolenic acid for chronic migraine, Journal of Clinical Neuroscience 58 (2018) 200-201. https://doi.org/10.1016/j.jocn.2018.10.013.
Belury, M. A., Cole, R. M., Snoke, D. B., Banh, T., Angelotti, A., Linoleic acid, glycemic control and Type 2 diabetes, Prostaglandins, Leukotrienes and Essential Fatty Acids 132 (2018) 30-33. https://doi.org/10.1016/j.plefa.2018.03.001.
Kim, K.-B., Nam, Y. A., Kim, H. S., Hayes, A. W., Lee, B.-M., α-linolenic acid: nutraceutical, pharmacological and toxicological evaluation, Food and Chemical Toxicology 70 (2014) 163-178. https://doi.org/10.1016/j.fct.2014.05.009.
Kim, Y., Ilich, J. Z., Implications of dietary α-linolenic acid in bone health, Nutrition 27 (11–12) (2011) 1101-1107. https://doi.org/10.1016/j.nut.2011.05.012.
Lorgeril, M. de, Salen, P., Alpha-linolenic acid and coronary heart disease, Nutrition, Metabolism and Cardiovascular Diseases 14 (3) (2004) 162-169. https://doi.org/10.1016/S0939-4753(04)80037-1.
Yamagishi, K., Murai, U., Usuki, R., Iso, H., Alpha-Linolenic Acid and Dementia in Epidemiological Studies, In: Omega Fatty Acids in Brain and Neurological Health (Second Edition), Watson, R. R., Preedy, V. R., eds., Academic Press, Oxford, 2019, p. 403-407. https://doi.org/10.1016/B978-0-12-815238-6.00025-0.
Nguemeni, C., Gouix, E., Bourourou, M., Heurteaux, C., Blondeau, N., Alpha-linolenic acid: a promising nutraceutical for the prevention of stroke, PharmaNutrition 1 (1) (2013) 1-8. https://doi.org/10.1016/j.phanu.2012.12.002.
Blondeau, N., The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke, Biochimie 120 (2016) 49-55. https://doi.org/10.1016/j.biochi.2015.06.005.
Pateiro, M., Domínguez, R., Munekata, P. E. S., Barba, F. J., Lorenzo, J. M., 4 - Lipids and Fatty Acids, In: Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds, Barba, F. J., Saraiva, J. M. A., Cravotto, G., Lorenzo, J. M., eds., Woodhead Publishing, Sawston, 2019, p. 107-137. https://doi.org/10.1016/B978-0-12-814174-8.00004-4.
Hernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., Martínez-Sánchez, C. E., effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo), Ultrasonics Sonochemistry 31 (2016) 429-436. https://doi.org/10.1016/j.ultsonch.2016.01.029.
Santos, K. A., Klein, E. J., Silva, C. da, Silva, E. A. de, Cardozo-Filho, L., Extraction of vetiver (Chrysopogon zizanioides) root oil by supercritical CO2, pressurized-liquid, and ultrasound-assisted methods and modeling of supercritical extraction kinetics, The Journal of Supercritical Fluids 150 (2019) 30-39. https://doi.org/10.1016/j.supflu.2019.04.005.
Dobrowolska-Iwanek, J., Zagrodzki, P., Woźniakiewicz, M., Woźniakiewicz, A., Zwolińska-Wcisło, M., Winnicka, D., Paśko, P., Procedure optimization for extracting short-chain fatty acids from human faeces, Journal of Pharmaceutical and Biomedical Analysis 124 (2016) 337-340. https://doi.org/10.1016/j.jpba.2016.02.042.
Li, J., Yue, Y., Li, T., Hu, X., Zhong, H., Gas chromatography–mass spectrometric analysis of bonded long chain fatty acids in a single zebrafish egg by ultrasound-assisted one-step transmethylation and extraction, Analytica Chimica Acta 650 (2) (2009) 221-226. https://doi.org/10.1016/j.aca.2009.07.045.
Daneshvand, B., Ara, K. M., Raofie, F., Comparison of Supercritical Fluid Extraction and Ultrasound-Assisted Extraction of Fatty Acids from Quince (Cydonia oblonga Miller) Seed Using Response Surface Methodology and Central Composite Design, Journal of Chromatography A 1252 (2012) 1-7. https://doi.org/10.1016/j.chroma.2012.06.063.
Hammond, E. W., FATTY ACIDS | Analysis, In: Encyclopedia of Food Sciences and Nutrition (Second Edition), Caballero, B., ed., Academic Press, Oxford, 2003, p. 2311-2317. https://doi.org/10.1016/B0-12-227055-X/00449-1.
Narváez-Rivas, M., León-Camacho, M., Fatty Acids: Determination and Requirements, In: Encyclopedia of Food and Health; Caballero, B., Finglas, P. M., Toldrá, F., eds., Academic Press, Oxford, 2016, p. 609-614. https://doi.org/10.1016/B978-0-12-384947-2.00278-6.
Miwa, H., High-Performance Liquid Chromatographic Determination of Free Fatty Acids and Esterified Fatty Acids in Biological Materials as Their 2-Nitrophenylhydrazides, Analytica Chimica Acta 465 (1–2) (2002) 237-255. https://doi.org/10.1016/S0003-2670(01)01582-3.
Makahleh, A., Saad, B., Siang, G. H., Saleh, M. I., Osman, H., Salleh, B., Determination of Underivatized Long Chain Fatty Acids Using RP-HPLC with Capacitively Coupled Contactless Conductivity Detection, Talanta 81 (1–2) (2010) 20-24. https://doi.org/10.1016/j.talanta.2009.11.030.
Campíns-Falcó, P., Herráez-Hernández, R., Serra-Mora, P., Liquid Chromatography | Instrumentation, In: Encyclopedia of Analytical Science (Third Edition), Worsfold, P., Poole, C., Townshend, A., Miró, M., eds., Academic Press, Oxford, 2019, p. 108-116. https://doi.org/10.1016/B978-0-12-409547-2.14218-0.
Moldoveanu, S. C., David, V., Basic Information Regarding the HPLC Techniques, In Selection of the HPLC Method in Chemical Analysis; Moldoveanu, S. C., David, V., eds., Elsevier, Amsterdam, 2017, p. 87-187. https://doi.org/10.1016/B978-0-12-803684-6.00004-4.
Bendicho, C., Lavilla, I., Ultrasound Extractions, In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam, 2018. https://doi.org/10.1016/B978-0-12-409547-2.04571-6.
Quattrocchi, O., Abelaira, S., Felipe Laba, R., Introduccion a La HPLC, Aplicación y Practica, Artes Gráficas Farro SA, Buenos Aires, 1992, pp. 407.
Pavón-Pérez, J., Peña-Farfal, C., Aranda, M., Henriquez-Aedo, K., Optimization and Validation of a Liquid Chromatographic Method for Determination of Capsaicin in Chili Peppers, Journal of the Chilean Chemical Society 64 (2) (2019) 4475-4479. https://doi.org/10.4067/S0717-97072019000204475.
Donda, S. T., Baviskar, V. B., Bari, S. B., Deshmukh, P. K., Deore, D. S., Girase, N. M., Khan, Z. G., Patil, P. O., Development and Validation of RP- HPLC Method for the Simultaneous Estimation of Tramadol Hydrochloride and Dicyclomine in Bulk and Pharmaceutical Formulation, Journal of the Chilean Chemical Society 61 (2) (2016) 2852-2855. https://doi.org/10.4067/S0717-97072016000200001.
Abraham, J., International Conference On Harmonisation Of Technical Requirements For Registration Of Pharmaceuticals For Human Use, In: Handbook of Transnational Economic Governance Regimes, Tietje, C., Brouder, A., eds., Brill | Nijhoff, Leiden, 2010. https://doi.org/10.1163/ej.9789004163300.i-1081.897.
Khoei, M., Chekin, F., The Ultrasound-Assisted Aqueous Extraction of Rice Bran Oil, Food Chemistry 194 (2016) 503-507. https://doi.org/10.1016/j.foodchem.2015.08.068.
Amiri, S., Shakeri, A., Sohrabi, M. R., Khalajzadeh, S., Ghasemi, E., optimization of ultrasonic assisted extraction of fatty acids from Aesculus hippocastanum fruit by response surface methodology, Food Chemistry 271 (2019) 762-766. https://doi.org/10.1016/j.foodchem.2018.07.144.
Rodriguez-Leyva, D., Bassett, C. M. C., McCullough, R., Pierce, G. N., The Cardiovascular Effects of Flaxseed and Its Omega-3 Fatty Acid, Alpha-Linolenic Acid, Canadian Journal of Cardiology 26 (9) (2010) 489-496. https://doi.org/10.1016/S0828-282X(10)70455-4.
Ameen, N. H. A., Durak, E., Study of the Tribological Properties the Mixture of Soybean Oil and Used (Waste) Frying Oil Fatty Acid Methyl Ester under Boundary Lubrication Conditions, Renewable Energy 145 (2020) 1730-1747. https://doi.org/10.1016/j.renene.2019.06.117.
Zanqui, A. B., da Silva, C. M., Morais, D. R. de, Santos, J. M., Ribeiro, S. A. O., Eberlin, M. N., Cardozo-Filho, L., Visentainer, J. V., Gomes, S. T. M., Matsushita, M., Sacha Inchi (Plukenetia Volubilis L.) Oil Composition Varies with Changes in Temperature and Pressure in Subcritical Extraction with n-Propane, Industrial Crops and Products 87 (2016) 64-70. https://doi.org/10.1016/j.indcrop.2016.04.029.
Wang, S., Zhu, F., Kakuda, Y., Sacha Inchi (Plukenetia Volubilis L.): Nutritional Composition, Biological Activity, and Uses, Food Chemistry 265 (2018) 316-328. https://doi.org/10.1016/j.foodchem.2018.05.055.
Dobrowolska-Iwanek, J., Lauterbach, R., Huras, H., Paśko, P., Prochownik, E., Woźniakiewicz, M., Chrząszcz, S., Zagrodzki, P., HPLC-DAD Method for the Quantitative Determination of Short-Chain Fatty Acids in Meconium Samples, Microchemical Journal 155 (2020) 104671. https://doi.org/10.1016/j.microc.2020.104671.
Li, G.-L., Chen, G., Liu, Y.-Q., Jing, N.-H., You, J.-M., A Sensitive and Selective HPLC-FLD Method with Fluorescent Labeling for Simultaneous Detection of Bile Acid and Free Fatty Acid in Human Serum, Journal of Chromatography B 895-896 (2012) 191-195. https://doi.org/10.1016/j.jchromb.2012.03.029.