Comparison between two Polyethersulfone concentrations in hollow fiber ultrafiltration membranes. Is it worth to use more polymer?

Main Article Content

Karen Gonzaga
Jose Carlos Mierzwa

Abstract

Polyethersulfone (PES) hollow fiber membranes were fabricated using dry-jet wet spinning technique, a phase inversion method, with 16 and 20% PES, N-methyl-2-pyrrolidone (NMP) as solvent and tap water as nonsolvent, in order to evaluate if the amount of polymer has a significant effect on its properties. They were characterized using SEM for a morphological analysis, a continuous system to measure pure water permeability (PWP) and molecular weight cutoff (MWCO), and a universal testing machine to tensile tests. The obtained results for PWP was an average of about 220 L m- ² h-1 bar-1 for the 16% PES membrane and 174 L m- ² h-1 bar-1 for the 20% PES membrane. The results of mechanical resistance and MWCO did not present statistical differences. Thus, it is confirmed that the 16% PES membrane can be as good as the 20%, despite using less polymer, a finding that can further motivate membrane modification studies and other related works.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gonzaga, K., & Mierzwa, J. C. (2021). Comparison between two Polyethersulfone concentrations in hollow fiber ultrafiltration membranes. Is it worth to use more polymer?. Eclética Química, 46(1), 52–60. https://doi.org/10.26850/1678-4618eqj.v46.1.2021.p52-60
Section
Original articles

References

Bildyukevich, A. V., Plisko, T. V. Usosky, V. V., The formation of polysulfone hollow fiber membranes by the free fall spinning method, Petroleum Chemistry 56 (2) (2016) 379-400. https://doi.org/10.1134/S0965544116050042.

Kurada, K. V., De, S., Modeling of solution thermodynamics: A method for tuning the properties of blend polymeric membranes, Journal of Membrane Science 540 (2017) 485-495. https://doi.org/10.1016/j.memsci.2017.06.049.

Werber, J. R., Osuji, C. O., Elimelech, M., Materials for next-generation desalination and water purification membranes, Nature Reviews Materials 1 (2016) 16018. https://doi.org/10.1038/natrevmats.2016.18.

Khulbe, K. C., Matsuura, T., Recent progress in polymeric hollow-fibre membrane preparation and applications, Membrane Technology 2016 (7) (2016) 7-13. https://doi.org/10.1016/S0958-2118(16)30149-5.

Simone, S., Galiano, F., Faccini, M., Boerrigter, M. E., Chaumette, C., Drioli, E., Figoli, A., Preparation and Characterization of Polymeric-Hybrid PES/TiO2 Hollow Fiber Membranes for Potential Applications in Water Treatment, Fibers 5 (2) (2017) 14. https://doi.org/10.3390/fib5020014.

Lan, P., Wang, W., Structure Morphology of Polyethersulfone Hollow Fiber Membrane via Immersion Precipitation Phase Inversion Process, Applied Mechanics and Materials 152-154 (2012) 574-578. https://doi.org/10.4028/www.scientific.net/AMM.152-154.574.

Ahmad, A. L., Otitoju, T. A., Ooi, B. S., Hollow fiber (HF) membrane fabrication: A review on the effects of solution spinning conditions on morphology and performance, Journal of Industrial and Engineering Chemistry 70 (2019) 35-50. https://doi.org/10.1016/j.jiec.2018.10.005.

Chew, C. M., Aroua, M. K., Hussain, M. A., Advanced process control for ultrafiltration membrane water treatment system, Journal of Cleaner Production 179 (2018) 63-80. https://doi.org/10.1016/j.jclepro.2018.01.075.

Tsehaye, M. T., Velizarov, S., Van der Bruggen, B., Stability of polyethersulfone membranes to oxidative agents: A review, Polymer Degradation and Stability 157 (2018) 15-53. https://doi.org/10.1016/j.polymdegradstab.2018.09.004.

Alsalhy, Q. F., Salih, H. A., Simone, S., Zablouk, M., Drioli, E., Figoli, A., Poly(ether sulfone) (PES) hollow-fiber membranes prepared from various spinning parameters, Desalination 345 (2014) 21-35. https://doi.org/10.1016/j.desal.2014.04.029.

Xu, Z.-L., Qusay, F. A., Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution, Journal of Membrane Science 233 (1-2) (2004) 101-111. https://doi.org/10.1016/j.memsci.2004.01.005.

Liu, T., Xu, S., Zhang, D., Sourirajan, S., Matsuura, T., Pore size and pore size distribution on the surface of polyethersulfone hollow fiber membranes, Desalination 85 (1) (1991) 1-12. https://doi.org/10.1016/0011-9164(91)85142-H.

Chung, T. S., Hu, X., Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers, Journal of Applied Polymer Science 66 (6) (1997) 1067-1077. https://doi.org/10.1002/(SICI)1097-4628(19971107)66:6%3C1067::AID-APP7%3E3.0.CO;2-G.

Thong, Z., Gao, J., Zoe, J. X., Wang, K.-Y., Chung, T.-S., Fabrication of loose outer-selective nanofiltration (NF) polyethersulfone (PES) hollow fibers via single-step spinning process for dye removal, Separation and Purification Technology 192 (2018) 483-490. https://doi.org/10.1016/j.seppur.2017.10.031.

Xu, Z.-L., Qusay, F. A., Effect of Polyethylene Glycol Molecular Weights and Concentrations on Polyethersulfone Hollow Fiber Ultrafiltration Membranes, Journal of Applied Polymer Science 91 (5) (2004) 3398-3407. https://doi.org/10.1002/app.13580.

Chung, T. S., Teoh, S. K., Hu, X., Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes, Journal of Membrane Science 133 (2) (1997) 161-175. https://doi.org/10.1016/S0376-7388(97)00101-4.

Deng, K., Liu, Z., Luo, F., Xie, R., He, X.-H., Jiang, M.-Y., Ju, X.J., Wang, W., Chu, L.-Y., Controllable fabrication of polyethersulfone hollow fiber membranes with a facile double co-axial microfluidic device, Journal of Membrane Science 526 (2017) 9-17. https://doi.org/10.1016/j.memsci.2016.12.012.

Prisciandaro, M., Di Celso, G. M., On the removal of natural organic matter from superficial water by using UF and MF membranes, Desalination and Water Treatment 57 (6) (2016) 2481-2488. https://doi.org/10.1080/19443994.2015.1031184.

Le, N. L., Nunes, S. P., Materials and membrane technologies for water and energy sustainability, Sustainable Materials and Technologies 7 (2016) 1-28. https://doi.org/10.1016/j.susmat.2016.02.001.

Novotna, K., Cermakova, L., Pivokonska, L., Cajthaml, T., Pivokonky, M., Microplastics in drinking water treatment – Current knowledge and research needs, Science of the Total Environment 667 (2019) 730-740. https://doi.org/10.1016/j.scitotenv.2019.02.431.

Wang, Z., Lin, T., Chen, W., Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP), Science of the Total Environment 700 (2020) 134520. https://doi.org/10.1016/j.scitotenv.2019.134520.

Ma, B., Xu, W., Hu, C., Liu, H., Qu, J., Li, L., Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment, Chemical Engineering Journal 359 (2019) 159-167. https://doi.org/10.1016/j.cej.2018.11.155.

Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., De France, J., Microplastics in freshwaters and drinking water: Critical review and assessment of data quality, Water Research 155 (2019) 410-422. https://doi.org/10.1016/j.watres.2019.02.054.

Septianto, F., Lee, M. S. W., Emotional responses to plastic waste: Matching image and message framing in encouraging consumers to reduce plastic consumption, Australasian Marketing Journal 28 (1) (2020) 18-29. https://doi.org/10.1016/j.ausmj.2019.09.002.

Morihama, A. C. D., Mierzwa, J. C., Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes, Brazilian Journal of Chemical Engineering 31 (1) (2014) 79-93. https://doi.org/10.1590/S0104-66322014000100009.

Arahman, N., Mulyati, S., Lubis, M. R., Razi, F., Takagi, R., Matsuyama, H., Modification of polyethersulfone hollow fiber membrane with different polymeric additives, Membrane Water Treatment 7 (4) (2016) 355-365. https://doi.org/10.12989/mwt.2016.7.4.355.

Qin, J.-J., Gu, J., Chung, T.-S., Effect of wet and dry-jet wet spinning on the shear-induced orientation during the formation of ultrafiltration hollow fiber membranes, Journal of Membrane Science 182 (1-2) (2001) 57-75. https://doi.org/10.1016/S0376-7388(00)00552-4.

Wan, P., Yin, J., Deng, B., Seven-bore hollow fiber membrane (HFM) for ultrafiltration (UF), Chemical Engineering Research and Design 128 (2017) 240-247. https://doi.org/10.1016/j.cherd.2017.09.019.

Al Aani, S., Wright, C. J., Hilal, N., Investigation of UF membranes fouling and potentials as pre-treatment step in desalination and surface water applications, Desalination 432 (2018) 115-127. https://doi.org/10.1016/j.desal.2018.01.017.

Lalia, B. S., Kochkodan, V., Hashaikeh, R., Hilal, N., A review on membrane fabrication: Structure, properties and performance relationship, Desalination 326 (2013) 77-95. https://doi.org/10.1016/j.desal.2013.06.016.

Van der Bruggen, B., Mänttäri, M., Nyström, M., Drawbacks of applying nanofiltration and how to avoid them: A review, Separation and Purification Technology 63 (2) (2008) 251-263. https://doi.org/10.1016/j.seppur.2008.05.010.

Rodrigues, R., Morihama, A. C. D., Barbosa, I. M., Leocádio, G. N., Mierzwa, J. C., Clay Nanoparticles Composite Membranes Prepared with Three Different Polymers: Performance Evaluation, Journal of Membrane and Separation Technology 7 (2018) 1-11. https://doi.org/10.6000/1929-6037.2018.07.01.