Zinc fractionation in cow, goat, sheep and soybean milk samples using gel-electrophoresis and determination by electrothermal atomic absorption spectrometry (ETAAS)

Main Article Content

Carla Maíra Bossu
Rodrigo Giglioti
Marcia Cristina de Sena Oliveira
Pedro Vitoriano de Oliveira
Ana Rita de Araujo Nogueira

Abstract

A screening method for zinc levels in different milk samples (raw cow, raw sheep, UHT cow, UHT goat and soybean milk base) was performed to establish the Zn levels’ differences in protein samples. The samples were digested in a cavity microwave oven and the total Zn levels in the extracts were determined by flame absorption atomic spectrometry (FAAS). The protein separation was performed by urea polyacrylamide gel electrophoresis (UREA-PAGE). Protein bands were digested in the cavity microwave oven and Zn-protein analysis was further conducted by electrothermal atomic absorption spectrometry (ETAAS). The results showed that Zn is mainly bound to 32 kDa (β-casein) protein (17.0 ± 2.0%) in UHT cow and 24 kDa (α-casein) protein (9.0 ± 0.6%) in raw sheep milk. This method provided quantitative information regarding Zn species present in the protein fractions of the milk samples. The accuracy was evaluated using certified reference material (whole milk powder, NIST 8435) with statistically equivalent concentrations (Student’s t-test) for total Zn and by addition and recovery experiments applied to measure Zn-protein. The recovered values were in the 92-110% range.

Metrics

Metrics Loading ...

Article Details

How to Cite
Bossu, C. M., Giglioti, R., Oliveira, M. C. de S., de Oliveira, P. V., & Nogueira, A. R. de A. (2021). Zinc fractionation in cow, goat, sheep and soybean milk samples using gel-electrophoresis and determination by electrothermal atomic absorption spectrometry (ETAAS). Eclética Química, 46(1), 12–20. https://doi.org/10.26850/1678-4618eqj.v46.1.2021.p12-20
Section
Original articles

References

Scheplyagina, L. A., Impact of the mother's zinc deficiency on the women's and newborn's health status, Journal of Trace Elements in Medicine and Biology 19 (1) (2005) 29-35. https://doi.org/10.1016/j.jtemb.2005.07.008.

Ballard, O., Morrow, A. L. Human Milk Composition: Nutrients and Bioactive Factors, Pediatric Clinics of North America 60 (1) (2013) 49-74. https://doi.org/10.1016/j.pcl.2012.10.002.

Hodgkinson, A. J., Wallace, O. A. M., Smolenski, G., Prosser, C. G., Gastric digestion of cow and goat milk: Peptides derived from simulated conditions of infant digestion, Food Chemistry 276 (2019) 619-625. https://doi.org/10.1016/j.foodchem.2018.10.065.

Michalke, B., Element speciation definitions, analytical methodology, and some examples, Ecotoxicology and Environmental Safety 56 (1) (2003) 122-139. https://doi.org/10.1016/S0147-6513(03)00056-3.

Arruda, M. A. Z., Azevedo, R. A., Metallomics and chemical speciation: towards a better understanding of metal-induced stress in plants, Annals of Applied Biology 155 (2009) 301-307. https://doi.org/10.1111/j.1744-7348.2009.00371.x.

Templeton, D. M., Ariese, F., Cornelis, R., Danielsson, L.-G., Muntau, H., van Leeuwen, H. P. V., Lobinski, R., Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects and methodological approaches (IUPAC Recommendations 2000), Pure and Applied Chemistry 72 (8) (2000) 1453-1470. https://doi.org/10.1351/pac200072081453.

Shi, W., Chance, M. R., Metalloproteomics: forward and reverse approaches in metalloprotein structural and functional characterization, Current Opinion in Chemical Biology 15 (1) (2011) 144-148. https://doi.org/10.1016/j.cbpa.2010.11.004.

Dupont, D., Croguennec, T., Pochet, S., Milk Proteins – Analytical Methods, Reference Module in Food Science (2018) 1-14. https://doi.org/10.1016/B978-0-08-100596-5.22616-4.

Pozzi, C. M. C., Braga, C. P., Vieira, J. C. S., Cavecci, B., Queiroz, J. V., Barbosa, H. S., Arruda, M. A. Z., Gozzo, F. C., Padilha, P. M., Metal ions bound to the human milk immunoglobulin A: Metalloproteomic approach, Food Chemistry 166 (2015) 492-497. https://doi.org/10.1016/j.foodchem.2014.06.040.

Aslebagh, R., Channaveerappa, D., Arcaro, K. F., Darie, C. C., Comparative two dimensional polyacrylamide gel electrophoresis (2D-PAGE) of human milk to identify dysregulated proteins in breast cancer, Electrophoresis 39 (14) (2018) 1723-1734. https://doi.org/10.1002/elps.201800025.

Vacchina, V., Oguey, S., Ionescu, C., Bravo, D., Lobinski, R., Characterization of metal glycinate complexes by electrospray Q-TOF-MS/MS and their determination by capillary electrophoresis–ICP-MS: application to premix samples, Analytical and Bioanalytical Chemistry 398 (2010) 435-449. https://doi.org/10.1007/s00216-010-3907-1.

Santos, F. A., Lima, P. M., Neves, R. C. F., Moraes, P. M., Pérez, C. A., Silva, M. O. A., Arruda, M. A. Z., Castro, G. R., Padilha, P. M., Metallomic study on plasma samples from Nile tilapia using SR-XRF and GFAAS after separation by 2D PAGE: initial results, Microchimica Acta 173 (2011) 43-49. https://doi.org/10.1007/s00604-010-0522-y.

Neves, R. C. F., Lima, P. M., Baldassini, W. A., Santos, F. A., Moraes, P. M., Castro, G. R., Padilha P. M., Fracionamento de cobre em proteínas do plasma, músculo e fígado de tilápia do Nilo. Química Nova 35 (3) (2012) 493-498. https://doi.org/10.1590/S0100-40422012000300010.

Wang, Q., Bernhard Michalke (Ed.): Metallomics: analytical techniques and speciation methods, Analytical and Bioanalytical Chemistry 409 (2017) 5617–5618. https://doi.org/10.1007/s00216-017-0524-2.

Magalhães, C. S., Arruda, M. A. Z., Sample preparation for metalloprotein analysis: A case study using horse chestnuts, Talanta 71 (5) (2007) 1958-1963. https://doi.org/10.1016/j.talanta.2006.08.039.

Wang, Q., Xiong, Y. L., Zinc-binding behavior of hemp protein hydrolysates: Soluble versus insoluble zinc-peptide complexes, Journal of Functional Foods 49 (2018) 105-112. https://doi.org/10.1016/j.jff.2018.08.019.

Silva, M. S., Sele, V., Sloth, J. J., Araujo, P., Amlund, H., Speciation of zinc in fish feed by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry using fractional factorial design for method optimisation and mild extraction conditions, Journal of Chromatography B 1104 (2019) 262-268, https://doi.org/10.1016/j.jchromb.2018.11.010.

Egito, A. S., Rosinha, G. M. S., Laguna, L. E., Miclo, L., Girardet, J. M., Gaillard, J. L., Método eletroforético rápido para detecção da adulteração do leite caprino com leite bovino, Arquivo Brasileiro de Medicina Veterinária e Zootecnia 58 (5) (2006) 932-939. https://doi.org/10.1590/S0102-09352006000500032.

Gomez, B. G., Perez-Corona, M. T., Madrid, Y., Availability of zinc from infant formula by in vitro methods (solubility and dialyzability) and size-exclusion chromatography coupled to inductively coupled plasma-mass spectrometry, Journal of Dairy Science 99 (12) (2016) 9405-9414. https://doi.org/10.3168/jds.2016-11405.

Liu, W., Lou, H., Ritzoulis, C., Chen, X., Shen, P., Lu, Y., Wu, K., Dong, L., Zhu, H., Han, J., Structural characterization of soybean milk particles during in vitro digestive/non-digestive simulation, LWT 108 (2019) 326-331. https://doi.org/10.1016/j.lwt.2019.03.086.

Maqsood, S., Al-Dowaila, A., Mudgil, P., Kamal, H., Jobe, B., Hassan, H. M., Comparative characterization of protein and lipid fractions from camel and cow milk, their functionality, antioxidant and antihypertensive properties upon simulated gastro-intestinal digestion, Food Chemistry 279 (2019) 328-338. https://doi.org/10.1016/j.foodchem.2018.12.011.

Ren, C., Tang, L., Zhang, M., Guo, S., Interactions between whey soybean protein (WSP) and beta-conglycinin (7S) during the formation of protein particles at elevated temperatures, Food Hydrocolloids 23 (3) (2009) 936-941. https://doi.org/10.1016/j.foodhyd.2008.06.007.

Naqvi, M. A., Irani, K. A., Katanishooshtari, M., Rousseau D., Disorder in Milk Proteins: Formation, Structure, Function, Isolation and Applications of Casein Phosphopeptides, Current Protein & Peptide Science 17 (4) (2016) 368-379. https://doi.org/10.2174/1389203717666151201191658.

Raynal-Ljutovac, K., Lagriffoul, G., Paccard, P., Guillet, I., Chilliard, Y., Composition of goat and sheep milk products: An update, Small Ruminant Research 79 (1) (2008) 57-72. https://doi.org/10.1016/j.smallrumres.2008.07.009.

Güler, Z., Levels of 24 minerals in local goat milk, its strained yoghurt and salted yoghurt (tuzlu yoğurt), Small Ruminant Research 71 (1-3) (2007) 130. https://doi.org/10.1016/j.smallrumres.2006.05.011.

Pereira Junior, J. B., Fernandes, K. G., Müller, R. C. S., Nóbrega, J. A., Palheta D. C., Determinação direta de Ca, Mg, Mn e Zn em amostras de leite de búfala da ilha de marajó por espectrometria de absorção atômica com chama (FAAS) Química Nova 32 (9) (2009) 2333-2335. https://doi.org/10.1590/S0100-40422009000900018.

Bossu, C. M., Carioni, V. M. O., Naozuka, J., Oliveira, P. V., Nomura, C. S., Direct determination of arsenobetaine and total As in robalo fish liver and tuna fish candidate reference material by slurry sampling graphite furnace atomic absorption spectrometry (SLS-GF AAS), Eclética Química Journal 44 (2) (2019) 37-44. https://doi.org/10.26850/1678-4618eqj.v44.2.2019.p37-44.

Taverniers, I., Loose, M., Van Bockstaele, E., Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance, TrAC Trends in Analytical Chemistry 23 (8) (2004) 535-552. https://doi.org/10.1016/j.trac.2004.04.001.

Chudzinka, M., Debska, A., Baralkiewicz, D., Method validation for determination of 13 elements in honey samples by ICP-MS, Accreditation and Quality Assurance 17 (2012) 65-73, https://doi.org/10.1007/s00769-011-0812-z.

Góes, H. C. A., Torrese, A. G., Donangelo, C. M., Trugo, N. M. F., Nutrient composition of banked human milk in Brazil and influence of processing on zinc distribution in milk fractions, Nutrition 18 (7-8) (2002) 590-594. https://doi.org/10.1016/S0899-9007(02)00813-4.

Gaucheron, F., The minerals of milk, Reproduction Nutrition Development 45 (4) (2005) 473-483. https://doi.org/10.1051/rnd:2005030.

Miquel, E., Farré, R., Effects and future trends of casein phosphopeptides on zinc bioavailability, Trends in Food Science & Technology 18 (3) (2007) 139-143. https://doi.org/10.1016/j.tifs.2006.11.004.

Pabón, M. L., Lönnerdal, B., Bioavailability of zinc and its binding to casein in milks and formulas, Journal of Trace Elements in Medicine and Biology 14 (3) (2000) 146-153. https://doi.org/10.1016/S0946-672X(00)80003-6.

Jung, S., Murphy, P. A., Sala I., Isoflavone profiles of soymilk as affected by high-pressure treatments of soymilk and soybeans, Food Chemistry 111 (3) (2008) 592-598. https://doi.org/10.1016/j.foodchem.2008.04.025.

Zaheer, K., Akhtar, M. H. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Journal Critical Reviews in Food Science and Nutrition 57 (6) (2017) 1280-1293. https://doi.org/10.1080/10408398.2014.989958.

Kamizake, N. K. K., Gonçalves, M. M., Zaia, C. T. B. V., Zaia, D. A. M., Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods, Journal of Food Composition and Analysis 16 (4) (2003) 507-516. https://doi.org/10.1016/S0889-1575(03)00004-8.