Electrodeposition study of the Cu-Zn-Mo system in citrate/sulfate medium

Main Article Content

Hugo Sousa Santos
Alessandra Alves Correa
Murilo Fernando Gromboni
Lucia Helena Mascaro

Abstract

Alloys and composites that contain molybdenum have been studied due to their excellent properties, such as corrosion resistance and catalytic activity. In this work, the parameters for Cu-Zn-Mo system electrodeposition were studied, such as deposition potentials and concentration of electroactive species. The deposition potentials were examined using cyclic voltammetry and anodic linear stripping voltammetry (ALSV), the deposit morphology was evaluated using scanning electron microscopy (SEM) and crystallographic characterization was carried out for X-ray diffraction (XRD). The voltammetry studies indicated co-deposition of the metals in potentials more negative than -1.2 V, and a potential deposition at -1.5 V was chosen. The coatings presented morphology compact with small agglomerated particles with cauliflower structures, and the content of molybdenum, copper, and zinc ranged from 5 to 8%, 30 to 40% and 20 to 28%, respectively.

Metrics

Metrics Loading ...

Article Details

How to Cite
Santos, H. S., Correa, A. A., Gromboni, M. F., & Mascaro, L. H. (2019). Electrodeposition study of the Cu-Zn-Mo system in citrate/sulfate medium. Eclética Química, 44(1SI), 26–35. https://doi.org/10.26850/1678-4618eqj.v44.1SI.2019.p26-35
Section
Original articles

References

Morales, J., Fernandez, G. T., Esparza, P., Gonzalez, S., Salvarezza, R. C., Arvia, A. J., A comparative study on the passivation and localized corrosion of α, β, and α+β brass in borate buffer solutions containing sodium chloride-I. Electrochemical data, Corrosion Science 37 (2) (1995) 211-229. https://doi.org/10.1016/0010-938X(94)00108-I.

Lowenheim, F. A., Modern Electroplating, Wiley-Interscience, New York, 3rd ed., 1974.

Gómez, E., Pellicer, E., Vallés, E., Influence of the bath composition and the pH on the induced cobalt-molybdenum electrodeposition, Journal of Electroanalytical Chemistry 556 (2003) 137-145. https://doi.org/10.1016/S0022-0728(03)00339-5.

Sanches, L. S., Domingues, S. H., Carubelli, A., Mascaro, L. H., Electrodeposition of Ni-Mo and Fe-Mo alloys from sulfate-citrate acid solutions, Journal of Brazilian Chemical Society 14 (4) (2003) 556-563. https://doi.org/10.1590/S0103-50532003000400011.

Sanches, L. S., Domingues, S. H., Marino, C. E. B., Mascaro, L. H., Characterisation of electrochemically deposited Ni-Mo alloy coatings, Electrochemistry communication 6 (6) (2004) 543-548. https://doi.org/10.1016/j.elecom.2004.04.002.

Podlaha, E. J., Landolt, D., Induced codeposition: II. A mathematical model describing the electrodeposition of Ni-Mo alloys, Journal of The Electrochemical Society. 143 (3) (1996) 893-899. https://doi.org/10.1149/1.1836553.

Gómez, E., Pellicer, E., Duch, M., Esteve, J., Vallés, E., Molybdenum alloy electrodeposits for magnetic actuation, Electrochimica Acta 51 (16) (2006) 3214-3222. https://doi.org/10.1016/j.electacta.2005.09.010.

Saravanan, P., Raja, V. S., Mukherjee, S., Effect of alloyed molybdenum on corrosion behavior of plasma immersion nitrogen ion implanted austenitic stainless steel, Corrosion Science 74 (2013) 106-115. https://doi.org/10.1016/j.corsci.2013.04.030.

Liu, R., Yao, J., Zhang, Q., Yao, M. X., Collier, R., Effects of molybdenum content on the wear/erosion and corrosion performance of low-carbon Stellite alloys, Materials & Design 78 (2015) 95-106. https://doi.org/10.1016/j.matdes.2015.04.030.

Xia, M., Lei, T., Lv, N., Li, N., Synthesis and electrocatalytic hydrogen evolution performance of Ni-Mo-Cu alloy coating electrode, International Journal of Hydrogen Energy 39 (10) (2014) 4797-4802. https://doi.org/10.1016/j.ijhydene.2014.01.091.

Babu, M. V, Kumar, R. K., Prabhakar, O., Shankar, N. G., Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods, Surface and Coatings Technology 79 (1-3) (1996) 276-288. https://doi.org/10.1016/0257-8972(95)02453-0.

Savitskii, E. M., Burkhanov, G. S., Physical metallurgy of refractory metals and alloys, Consultants Bureau, New York, 1st ed., 1970.

Syed, R., Ghosh, S. K., Sastry, P. U., Sharma, G., Hubli, R. C., Chakravartty, J. K., Electrodeposition of thick metallic amorphous molybdenum coating from aqueous electrolyte, Surface Coatings Technology 261 (2015) 15-20. https://doi.org/10.1016/j.surfcoat.2014.11.073.

Kazimierczak, H., Ozga, P., Socha, R. P., Investigation of electrochemical co-deposition of zinc and molybdenum from citrate solutions, Electrochimica Acta 104 (2013) 378-390. https://doi.org/10.1016/j.electacta.2012.12.140.

Gromboni, M. F., Mascaro, L. H., Optical and structural study of electrodeposited zinc selenide thin fi lms, Journal of Electroanalytical Chemistry 780 (2016) 360-366. https://doi.org/10.1016/j.jelechem.2016.04.037.

Kazimierczak, H., Ozga, P., Swiatek, Z., Bielanska, E., Characterisation of Zn-Mo alloy layers electrodeposited from aqueous citrate solution, Journal of Alloys and Compounds 578 (2013) 82-89. https://doi.org/10.1016/j.jallcom.2013.04.205.

Gotou, M., Arakawa, T., Watanabe, N., Hara, T., Tomita, T., Hashimoto, A., Takanashi, H., Koiwa, I., Copper-molybdenum source ratio and complexing agent for high molybdenum content in electrodeposited Cu-Mo, Journal of The Electrochemical Society 161 (12) (2014) D628-D631. https://doi.org/10.1149/2.0051412jes.

Kazimierczak, H., Ozga, P., Berent, K., Kot, M., Microstructure and micromechanical properties of electrodeposited Zn-Mo coatings on steel, Journal of Alloys and Compounds 636 (2015) 156-164. https://doi.org/10.1016/j.jallcom.2015.02.165.

de Almeida, M. R. H., Barbano, E. P., Zacarin, M. G., Brito, M. M., Tulio, P. C., Carlos, I. A., Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent, Surface and Coatings Technology 287 (2016) 103-112. https://doi.org/10.1016/j.surfcoat.2015.12.079.

Özdemir, R., Karahan, İ. H., Karabulut, O., A study on the electrodeposited Cu-Zn alloy thin films, Metallurgical and Materials Transactions A 47 (11) (2016) 5609-5617. https://doi.org/10.1007/s11661-016-3715-0.

Juskenas, R., Karpaviciene, V., Pakstas, V., Selskis, A., Kapocius, V., Electrochemical and XRD studies of Cu-Zn coatings electrodeposited in solution with d-mannitol, Journal of Electroanalytical Chemistry 602 (2) (2007) 237-244. https://doi.org/10.1016/j.jelechem.2007.01.004.

Wang, X., Su, R., Aslan, H., Kibsgaard, J., Wendt, S., Meng, L., Dong, M., Huang, Y., Besenbacher, F., Tweaking the composition of NiMoZn alloy electrocatalyst for enhanced hydrogen evolution reaction performance, Nano Energy 12 (2015) 9-18. https://doi.org/10.1016/j.nanoen.2014.12.007.

Luo, D., Hu, W., Wang, Y., Zhang, Y., Wang, G., Study on amorphous Ni-Mo-Fe-Zn coating electrocatalyst for hydrogen evolution in alkaline solution, Journal of Mechanical Science and Technology 12 (3) (1996) 190-194.

Arul Raj, I., On the catalytic activity of NiMoFe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen, Applied Surface Science 59 (3-4) (1992) 245-252. https://doi.org/10.1016/0169-4332(92)90124-G.

Gamburg, Y. D., Zangari, G., Theory and Practice of Metal Electrodeposition, Springer, New York. 1st ed., 2011.

Loto, C. A., Electrodeposition of zinc from acid based solutions: A review and experimental study, Asian Journal Applied Sience 5 (6) (2012) 314-326. https://doi.org/10.3923/ajaps.2012.314.326.

Beltowska-Lehman, E., Electrodeposition of protective Ni-Cu-Mo coatings from complex citrate solutions, Surface Coatings Technology 151-152 (2002) 440-443. https://doi.org/10.1016/S0257-8972(01)01613-9.

Silva, F. L. G., Do Lago, D. C. B., D’Elia, E., Senna, L. F., Electrodeposition of Cu-Zn alloy coatings from citrate baths containing benzotriazole and cysteine as additives, Journal of Applied Electrochemistry 40 (11) (2010) 2013-2022. https://doi.org/10.1007/s10800-010-0181-z.

Slupska, M., Ozga, P., Electrodeposition of Sn-Zn-Cu alloys from citrate solutions, Electrochimica Acta 141 (2014) 149-160. https://doi.org/10.1016/j.electacta.2014.07.039.

Alonso, C., Pascual, M. J., Abruña, H. D., Influence of organic adsorbates on the under and overpotential deposition of copper on polycrystalline platinum electrodes, Electrochimica Acta 42 (11) (1997) 1739-1750. https://doi.org/10.1016/S0013-4686(96)00374-X.

Cruywagen, J. J., Rohwer, E. A., Wessels, G. F. S., Molybdenum(VI) complex formation-8. Equilibria and thermodynamic quantities for the reactions with citrate, Polyhedron 14 (23-24) (1995) 3481-3493. https://doi.org/10.1016/0277-5387(95)00210-J.

Field, T. B., McCourt, J. L., McBryde, W. A. E., Composition and stability of iron and copper citrate complexes in aqueous solution, Canadian Journal of Chemistry 52 (17) (1974) 3119-3124. https://doi.org/10.1139/v74-458.

Luo, Z., Miao, R., Huan, T. D., Mosa, I. M., Poyraz, A. S., Zhong, W., Cloud, J. E., Kriz, D. A., Thanneeru, S., He, J., Zhang, Y., Ramprasad, R., Suib, S. L., Mesoporous MoO-x material as an efficient electrocatalyst for hydrogen evolution reactions, Advanced Energy Materials 6 (16) (2016) 1600528. https://doi.org/10.1002/aenm.201600528.