Electrochemical degradation of aqueous alachlor and atrazine: products identification, lipophilicity, and ecotoxicity

Main Article Content

Rafaely Ximenes de Sousa Furtado
Eduardo Bessa Azevedo
Artur de Jesus Motheo

Abstract

This work studied the electrochemical degradation of alachlor and atrazine (alone and mixed with each other) using a filter-press cell, a dimensionally stable anode (DSA Ti/Ru0.3Ti0.7O2), initial pH 3.0, and temperature at 25 °C. The best operational conditions for alachlor (0.33 mmol L-1) degradation were obtained by a 32 factorial design, in which the factors/levels were: NaCl concentration (0.05, 0.1, and 0.15 mol L-1) and current density (10, 30, and 50 mA cm-2). Thus, 93.1% alachlor removal and 71.2% mineralization were achieved using 0.15 mol L-1 NaCl and 30 mA cm-2. In addition, the initial degradation products (DPs) of alachlor and atrazine were identified by liquid chromatography coupled to mass spectrometry (LC-MS). Acute and chronic ecotoxicities for three trophic levels (fishes, daphnids and green algae) and lipophilicity (log D, pH 7.4) of the DPs were also estimated using the ECOSAR 1.11 and ChemAxon Calculator software, respectively. The present study showed that the electrochemical degradation is an efficient method for removing the herbicides alachlor and atrazine from water and that the DPs formed have lower pollution potential than their original compounds.

Metrics

Metrics Loading ...

Article Details

How to Cite
Furtado, R. X. de S., Azevedo, E. B., & Motheo, A. de J. (2019). Electrochemical degradation of aqueous alachlor and atrazine: products identification, lipophilicity, and ecotoxicity. Eclética Química, 44(1SI), 12–25. https://doi.org/10.26850/1678-4618eqj.v44.1SI.2019.p12-25
Section
Original articles

References

Słaba, M., Różalska, S., Bernat, P., Szewczyk, R., Piątek, M. A., Długoński, J., Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction, Bioresource Technology 197 (Supplement C) (2015) 404-409. https://doi.org/10.1016/j.biortech.2015.08.045.

Pérez, M. H., Vega, L. P., Zúñiga-Benítez, H., Peñuela, G. A., Comparative Degradation of alachlor using photocatalysis and photo-Fenton, Water, Air, & Soil Pollution 229 (11) (2018) 346. https://doi.org/10.1007/s11270-018-3996-6.

Potter, T. L., Carpenter, T. L., Occurrence of alachlor environmental degradation products in groundwater, Environmental Science & Technology 29 (6) (1995) 1557-1563. https://doi.org/10.1021/es00006a018.

United States Environmental Protection Agency, Registration eligibility decision (RED) alachlor, 1998. https://archive.epa.gov/pesticides/reregistration/web/pdf/0063.pdf.

Chen, C. Z., Yan, C. T., Kumar, P. V., Huang, J. W., Jen, J. F., Determination of alachlor and its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched-sampling coupled to high-performance liquid chromatography, Journal of Agricultural and Food Chemistry 59 (15) (2011) 8078-8085. https://doi.org/10.1021/jf201129j.

Kidak, R., Dogan, S., Degradation of trace concentrations of alachlor by medium frequency ultrasound, Chemical Engineering and Processing: Process Intensification 89 (Supplement C) (2015) 19-27. https://doi.org/10.1016/j.cep.2014.12.010.

Mello, R., Santos, L. H. E., Pupo, M. M. S., Eguiluz, K. I. B., Salazar-Banda, G. R., Motheo, A. J., Alachlor removal performance of Ti/Ru0.3Ti0.7O2 anodes prepared from ionic liquid solution, Journal of Solid State Electrochemistry 22 (5) (2018) 1571-1580. https://doi.org/10.1007/s10008-017-3700-6.

Pipi, A. R. F., Andrade, A. R., Brillas, E., Sirés, I., Total removal of alachlor from water by electrochemical processes, Separation and Purification Technology 132 (Supplement C) (2014) 674-683. https://doi.org/10.1016/j.seppur.2014.06.022.

Sánchez-Camazano, M., Lorenzo, L. F., Sánchez-Martín, M. J., Atrazine and alachlor inputs to surface and ground waters in irrigated corn cultivation areas of castilla-leon region, Spain, Environmental Monitoring and Assessment 105 (1) (2005) 11-24. https://doi.org/10.1007/s10661-005-2814-y.

Spalding, R. F., Exner, M. E., Snow, D. D., Cassada, D. A., Burbach, M. E., Monson, S. J., Herbicides in ground water beneath Nebraska's management systems evaluation area, Journal of Environmental Quality 32 (1) (2003) 92-99. https://doi.org/10.2134/jeq2003.0092.

Guan, S. H., Huang, M. W., Li, X. P., Cai, Q., Determination of atrazine, simazine, alachlor, and metolachlor in surface water using dispersive pipette extraction and gas chromatography-mass spectrometry, Analytical Letters 51 (4) (2018) 613-625. https://doi.org/10.1080/00032719.2017.1341904.

Leal, D. P. B., Dick, D. P., Stahl, A. M., Köppchen, S., Burauel, P., Atrazine degradation patterns: the role of straw cover and herbicide application history, Scientia Agricola 76 (2019) 63-71. https://doi.org/10.1590/1678-992x-2017-0230.

Aquino, J. M., Miwa, D. W., Rodrigo, M. A., Motheo, A. J., Treatment of actual effluents produced in the manufacturing of atrazine by a photo-electrolytic process, Chemosphere 172 (Supplement C) (2017) 185-192. https://doi.org/10.1016/j.chemosphere.2016.12.154.

Santana, H., Bonancea, C. E., Takashima, K., Photoelectrochemical degradation of atrazina on titanium dioxide: Effect of different experimental parameters, Química Nova 26 (6) (2003) 807-811. https://doi.org/10.1590/s0100-40422003000600005.

United States Environmental Protection Agency, Decision documents for atrazine. 2006. https://swap.stanford.edu/20120106041942/http://www.epa.gov/oppsrrd1/REDs/atrazine_combined_docs.pdf.

Hladik, M. L., Bouwer, E. J., Roberts, A. L., Neutral degradates of chloroacetamide herbicides: Occurrence in drinking water and removal during conventional water treatment, Water Research 42 (20) (2008) 4905-4914. https://doi.org/10.1016/j.watres.2008.09.008.

Henriet, M. M., Mitchell, R. W., Prill, E. J., Emulsion flowable formulation containing a mixture of alachlor/atrazine as the active agent: Google Patents 1989. https://patents.google.com/patent/EP0142485B1/en.

Gomes, F. E. R., Souza, N. E., Galinaro, C. A., Arriveti, L. O. R., Assis, J. B., Tremiliosi-Filho, G., Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes, Journal of Electroanalytical Chemistry 769 (2016) 124-130. https://doi.org/10.1016/j.jelechem.2016.03.016.

Souza, F. L., Aquino, J. M., Miwa, D. W., Rodrigo, M. A., Motheo, A. J., Electrochemical degradation of dimethyl phthalate ester on a DSA® electrode, Journal of the Brazilian Chemical Society 25 (3) (2014) 492-501. https://doi.org/10.5935/0103-5053.20140007.

Zheng, D., Xin, Y. J., Ma, D., Wang, X., Wu, J., Gao, M. C., Preparation of graphene/TiO2 nanotube array photoelectrodes and their photocatalytic activity for the degradation of alachlor, Catalysis Science & Technology 6 (6) (2016) 1892-1902. https://doi.org/10.1039/c5cy00887e.

Wardenier, N., Vanraes, P., Nikiforov, A., Van Hulle, S. W. H., Leys, C., Removal of micropollutants from water in a continuous-flow electrical discharge reactor, Journal of Hazardous Materials 362 (2019) 238-245. https://doi.org/10.1016/j.jhazmat.2018.08.095.

Fornazari, A. L. T., Malpass, G. R. P., Miwa, D. W., Motheo, A. J., Application of electrochemical degradation of wastewater composed of mixtures of phenol-formaldehyde, Water Air and Soil Pollution 223 (8) (2012) 4895-4904. https://doi.org/10.1007/s11270-012-1245-y.

Malpass, G. R. P., Miwa, D. W., Santos, R. L., Vieira, E. M., Motheo, A. J., Unexpected toxicity decrease during photoelectrochemical degradation of atrazine with NaCl, Environmental Chemistry Letters 10 (2) (2012) 177-182. https://doi.org/10.1007/s10311-011-0340-4.

Malpass, G. R. P., Salazar-Banda, G. R., Miwa, D. W., Machado, S. A. S., Motheo, A. J., Comparing atrazine and cyanuric acid electro-oxidation on mixed oxide and boron-doped diamond electrodes, Environmental Technology 34 (8) (2013) 1043-1051. https://doi.org/10.1080/09593330.2012.733420.

Rajeshwar, K., Ibanez, J. G., Swain, G. M., Electrochemistry and the environment. Journal of Applied Electrochemistry 24 (11) (1994) 1077-1091. https://doi.org/10.1007/BF00241305.

Pieczyńska, A., Ossowski, T., Bogdanowicz, R., Siedlecka, E., Electrochemical degradation of textile dyes in a flow reactor: effect of operating conditions and dyes chemical structure, International Journal of Environmental Science and Technology 16 (2) (2019) 929-942. https://doi.org/10.1007/s13762-018-1704-0.

Pinto, C. F., Antonelli, R., Araújo, K. S., Fornazari, A. L. T., Fernandes, D. M., Granato, A. C., Azevedo, E. B., Malpass, G. R. P., Experimental-design-guided approach for the removal of atrazine by sono-electrochemical-UV-chlorine techniques, Environmental Technology 40 (4) (2019) 430-440. https://doi.org/10.1080/09593330.2017.1395480.

Malpass, G. R. P., Miwa, D. W., Mortari, D. A., Machado, S. A. S., Motheo, A. J., Decolorisation of real textile waste using electrochemical techniques: Effect of the chloride concentration, Water Research 41 (13) (2007) 2969-2977. https://doi.org/10.1016/j.watres.2007.02.054.

Parra, K. N., Gul, S., Aquino, J. M., Miwa, D. W., Motheo, A. J., Electrochemical degradation of tetracycline in artificial urine medium, Journal of Solid State Electrochemistry 20 (4) (2016) 1001-1009. https://doi.org/10.1007/s10008-015-2833-8.

Hussain, S., Gul, S., Steter, J. R., Miwa, D. W., Motheo, A. J., Route of electrochemical oxidation of the antibiotic sulfamethoxazole on a mixed oxide anode, Environmental Science and Pollution Research 22 (19) (2015) 15004-15015. https://doi.org/10.1007/s11356-015-4699-9.

Malpass, G. R. P., Miwa, D. W., Gomes, L., Azevedo, E. B., Vilela, W. F. D., Fukunaga, M. T., Guimaraes, J. R., Bertazzoli, R., Machado, S. A. S., Motheo, A. J., Photo-assisted electrochemical degradation of the commercial herbicide atrazine, Water Science and Technology 62 (12) (2010) 2729-2736. https://doi.org/10.2166/wst.2010.207.

Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., Motheo, A. J., SnO2-based materials for pesticide degradation, Journal of Hazardous Materials 180 (1-3) (2010) 145-151. https://doi.org/10.1016/j.jhazmat.2010.04.006.

Montes, I. J. S., Silva, B. F., Aquino, J. M., On the performance of a hybrid process to mineralize the herbicide tebuthiuron using a DSA® anode and UVC light: A mechanistic study, Applied Catalysis B-Environmental 200 (2017) 237-245. https://doi.org/10.1016/j.apcatb.2016.07.003.

Santos, T. E. S., Silva, R. S., Meneses, C. T., Martinez-Huitle, C. A., Eguiluz, K. I. B., Salazar-Banda, G. R., Unexpected enhancement of electrocatalytic nature of Ti/(RuO2)(x)-(Sb2O5)(y) anodes prepared by the ionic liquid-thermal decomposition method, Industrial & Engineering Chemistry Research 55 (11) (2016) 3182-3187. https://doi.org/10.1021/acs.iecr.5b04690.

Bharate, S. S., Kumar, V., Vishwakarma, R. A., Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery, Combinatorial Chemistry & High Throughput Screening 19 (6) (2016) 461-469. https://doi.org/10.2174/1386207319666160502123917.

Csizmadia, F., Tsantili-Kakoulidou, A., Panderi, I., Darvas, F., Prediction of distribution coefficient from structure .1. Estimation method, Journal of Pharmaceutical Sciences 86 (7) (1997) 865-871. https://doi.org/10.1021/js960177k.

Zhang, H., Liu, F., Wu, X. G., Zhang, J. H., Zhang, D. B., Degradation of tetracycline in aqueous medium by electrochemical method, Asia-Pacific Journal of Chemical Engineering 4 (5) (2009) 568-573. https://doi.org/10.1002/apj.286.

Rajkumar, D., Kim, J. G., Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment, Journal of Hazardous Materials 136 (2) (2006) 203-212. https://doi.org/10.1016/j.hazement.2005.11.096.

Trasatti, S., Electrocatalysis: understanding the success of DSA®, Electrochimica Acta 45 (15-16) (2000) 2377-2385. https://doi.org/10.1016/s0013-4686(00)00338-8.

Cheng, C. Y., Kelsall, G. H., Models of hypochlorite production in electrochemical reactors with plate and porous anodes, Journal of Applied Electrochemistry 37 (11) (2007) 1203-1217. https://doi.org/10.1007/s10800-007-9364-7.

Pipi, A. R. F., Aquino Neto, S., Andrade, A. R., Electrochemical degradation of diuron in chloride medium using DSA® based anodes, Journal of the Brazilian Chemical Society 24 (8) (2013) 1259-1266. https://doi.org/10.5935/0103-5053.20130159.

Scialdone, O., Randazzo, S., Galia, A.,Silvestri, G., Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl, Water Research 43 (8) (2009) 2260-2272. https://doi.org/10.1016/j.watres.2009.02.014.

Chauhan, R., Srivastava, V. C., Hiwarkar, A. D., Electrochemical mineralization of chlorophenol by ruthenium oxide coated titanium electrode, Journal of the Taiwan Institute of Chemical Engineers 69 (2016) 106-117. https://doi.org/10.1016/j.jtice.2016.10.016.

Gomes, L., Miwa, D. W., Malpass, G. R. P., Motheo, A. J., Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell, Journal of the Brazilian Chemical Society 22 (7) (2011) 1299-1306. https://doi.org/10.1590/s0103-50532011000700015.

Hussain, S., Steter, J. R., Gul, S.,Motheo, A. J., Photo-assisted electrochemical degradation of sulfamethoxazole using a Ti/Ru0.3Ti0.7O2 anode: Mechanistic and kinetic features of the process, Journal of Environmental Management 201 (2017) 153-162. https://doi.org/10.1016/j.jenvman.2017.06.043.

Bessegato, G. G., Cardoso, J. C., Silva, B. F., Zanoni, M. V. B., Combination of photoelectrocatalysis and ozonation: A novel and powerful approach applied in acid yellow 1 mineralization, Applied Catalysis B-Environmental 180 (2016) 161-168. https://doi.org/10.1016/j.apcatb.2015.06.013.

Bolton, J. R., Bircher, K. G., Tumas, W., Tolman, C. A., Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report), Pure and Applied Chemistry 73 (4) (2001) 627-637. https://doi.org/10.1351/pac200173040627.

Khan, J. A., He, X., Shah, N. S., Khan, H. M., Hapeshi, E., Fatta-Kassinos, D., Dionysiou, D. D., Kinetic and mechanism investigation on the photochemical degradation of atrazine with activated H2O2, S2O82- and HSO5, Chemical Engineering Journal 252 (2014) 393-403. https://doi.org/10.1016/j.cej.2014.04.104.

Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., Motheo, A. J., Decolourisation of real textile waste using electrochemical techniques: Effect of electrode composition, Journal of Hazardous Materials 156 (1-3) (2008) 170-177. https://doi.org/10.1016/j.jhazmat.2007.12.017.

Thiam, A., Salazar, R., Brillas, E., Sirés, I., Electrochemical advanced oxidation of carbofuran in aqueous sulfate and/or chloride media using a flow cell with a RuO2-based anode and an air-diffusion cathode at pre-pilot scale, Chemical Engineering Journal 335 (2018) 133-144. https://doi.org/10.1016/j.cej.2017.10.137.

Wang, X. K., Zhang, Y., Degradation of alachlor in aqueous solution by using hydrodynamic cavitation, Journal of Hazardous Materials 161 (1) (2009) 202-207. https://doi.org/10.1016/j.jhazmat.2008.03.073.

Qiang, Z. M., Liu, C., Dong, B. Z., Zhang, Y. L., Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process, Chemosphere 78 (5) (2010) 517-526. https://doi.org/10.1016/j.chemosphere.2009.11.037.

Javaroni, R. D. A., Landgraf, M. D., Rezende, M. O. O., Behavior of the herbicides atrazine and alachlor after application on soils prepared to sugar cane plantation, Química Nova 22 (1) (1999) 58-64. http://doi.org/10.1590/S0100-40421999000100012.

Chen, C., Yang, S. G., Guo, Y. P., Sun, C., Gu, C. G., Xu, B., Photolytic destruction of endocrine disruptor atrazine in aqueous solution under UV irradiation: Products and pathways, Journal of Hazardous Materials 172 (2-3) (2009) 675-684. https://doi.org/10.1016/j.jhazmat.2009.07.050.