Biosynthesis of tetrahydrobenzofuran neolignans in somatic embryos of Ocotea catharinensis
Main Article Content
Abstract
Somatic embryos of Ocotea catharinensis were used as a model to investigate the biosynthetic pathway of tetrahydrobenzofuran neolignan formation by means of feeding 13C-labelled precursors followed by analysis using MS and 13C NMR. Isotopomers of L-[13C]-phenylalanine administered to embryos were incorporated into tetrahydrobenzofuran neolignans and the analysis of 13C NMR clearly revealed the enriched position of precursors. While feeding a series of putative intermediate including [8–13C]-ferulic acid, [8–13C]-glycoferulic acid, and [8–13C]-coniferyl alcohol were not successful in incorporation to the neolignans, the [8–13C]-coniferyl acetate was detected as an intermediate in the biosynthesis of the neolignan 5’-methoxy-porosin. In the bioconversion assay using the protein fraction from the embryogenic cultures, only the substrate coniferyl acetate was converted into isoeugenol, which together with eugenol, is one of the putative precursors of neolignan formation. These findings support that the tetrahydrobenzofuran neolignans are derived from the oxidative coupling between units of E- isoeugenol and 5’-methoxy-eugenol leading to a regio- and stereospecific products.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
Funding data
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Grant numbers 2014–50316–7 -
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Grant numbers 304607/2019–3
References
Aiba, C. J.; Fernandes, J. B.; Gottlieb, O. R.; Maia, J. G. S. Neolignans from an Aniba species. Phytochemistry. 1975, 14 (7), 1579–1604. https://doi.org/10.1016/0031–9422(75)85358–1
Aiba, C. J.; Gottlieb, O. R.; Yoshida, M.; Mourão, J. C.; Gottlieb, H. E. Structure of porosin. Phytochemistry 1976, 15 (6), 1031–1032. https://doi.org/10.1016/S0031–9422(00)84397–6
Aiba, C. J.; Gottlieb, O. R.; Pagliosa, F. M.; Yoshida, M.; Magalhães, M. T. Neolignans from Nectandra miranda. Phytochemistry. 1977, 16 (6), 745–748. https://doi.org/10.1016/S0031–9422(00)89245–6
Aiba, C. J.; Gottlieb, O. R.; Maia, J. G. S.; Pagliosa, F. M.; Yoshida. M. Benzofuranoid neolignans from Licaria armeniaca. Phytochemistry. 1978, 17 (11), 2038–2039. https://doi.org/10.1016/S0031–9422(00)88765–8
Alvarenga, M. A. D.; Castro, O. C.; Giesbrecht, A. M.; Gottlieb, O. R. Bicyclo[3.2.1]octanoid neolignans from Aniba simulans. Phytochemistry. 1977, 16 (11), 1801–1804. https://doi.org/10.1016/0031–9422(71)85093–8
Amaral, W.; Deschamps, C.; Bizzo, H. R.; Pinto, M. A. S.; Biasi, L. A.; Silva, L. E., Essential Oil Yield and Composition of Native Tree Species from Atlantic forest, South of Brazil. J. Essent Oil–Bear. Plants. 2017, 20 (6), 1525–1535. https://doi.org/10.1080/0972060X.2017.1346484
Amazonas, D. R.; Oliveira, C.; Barata, L. E. S.; Tepe, E. J.; Kato, M. J.; Mourão, R. H. V.; Yamaguchi, L. F. Chemical and Genotypic Variations in Aniba rosiodora from the Brazilian Amazon Forest. Molecules. 2020, 26 (1), 69. https://doi.org/10.3390/molecules26010069
Anand, V.; Varalakshmi, Prasana, Kumar, S., Pushpa, Hedina, A. Cinnamomum zeylanicum Linn. The spice with multi potential. Sys. Rev. Pharm. 2016, 7 (1), 14–29. https://doi.org/10.5530/srp.2016.7.3
Anterola, A. M.; Lewis, N. G. Trends in lignin modification: A comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry. 2002, 61 (3), 221–294. https://doi.org/10.1016/S0031–9422(02)00211–X
Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72 (1–2), 248–254. https://doi.org/10.1016/0003–2697(76)90527–3
Cervantes–Paz, B.; Yahia, E. M. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr. Rev. Food Sci. Food Saf. 2021, 20 (4), 4120–4158. https://doi.org/10.1111/1541–4337.12784
Coy–Barrera, E. D.; Cuca–Suarez, L. E.; Sefkow, M. PAF–antagonistic bicyclo[3.2.1]octanoid neolignans from leaves of Ocotea macrophylla Kunth. (Lauraceae). Phytochemistry 2009, 70 (10), 1309–1314. https://doi.org/10.1016/j.phytochem.2009.07.010
David, J. M.; Yoshida, M.; Gottlieb, O. R. Neolignans from bark and leaves of Ocotea porosa. Phytochemistry. 1994, 36 (2), 491–499. https://doi.org/10.1016/S0031–9422(00)97102–4
Davin, L. B.; Wang, C.–Z.; Helms, G. L.; Lewis, N. G. [13C]–Specific labeling of 8–2’ linked (–)–cis–blechnic, (−)–trans–blechnic and (–)–brainic acids in the fern Blechnum spicant. Phytochemistry. 2003, 62 (3), 501–511. https://doi.org/10.1016/S0031–9422(02)00540–X
Doyle, J. A.; Endress, P. K. Morphological Phylogenetic Analysis of Basal Angiosperms: Comparison and Combination with Molecular Data. Int. J. Plant Sci. 2000, 161 (S6), S121–S153. https://doi.org/10.1086/317578
Endress, P. K.; Doyle, J. A. Reconstructing the ancestral angiosperm flower and its initial specialization. Am. J. Bot. 2009, 96 (1), 22–66. https://doi.org/10.3732/ajb.0800047
Felicio, J. D.; Motidome, M.; Yoshida, M.; Gottlieb, O. R. Further neolignans from Ocotea–aciphylla. Phytochemistry. 1986, 25 (7), 1707–1710. https://doi.org/10.1016/S0031–9422(00)81240–6
Ferrer, J.–L.; Austin, M. B.; Stewart Júnior, C.; Noe, J. P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol. Biochem. 2008, 46 (3), 356–370. https://doi.org/10.1016/j.plaphy.2007.12.009
Funasaki, M.; Lordello, A. L. L.; Viana, A. M.; Santa–Catarina, C.; Floh, E. I. S.; Yoshida, M.; Kato, M. J. Neolignans and Sesquiterpenes from Leaves and Embryogenic Cultures of Ocotea catharinensis (Lauraceae). J. Braz. Chem. Soc. 2009, 20 (5), 853–859. https://doi.org/10.1590/S0103–50532009000500008
Gottlieb, O. R. Chemosystematics of the lauraceae. Phytochemistry. 11 (5), 1537–1570. https://doi.org/10.1016/0031–9422(72)85001–5
Ishige, M.; Motidome, M.; Yoshida, M.; Gottlieb, O. R. Neolignans from Ocotea catharinensis. Phytochemistry. 1991, 30 (12), 4121–4128. https://doi.org/10.1016/0031–9422(91)83479–5
Jackson, D. E.; Dewick, P. M. Biosynthesis of podophyllum lignans–i. cinnamic acid precursors of podophyllotoxin in Podophyllum hexandrum. Phytochemistry. 1984, 23 (5), 1029–1035. https://doi.org/10.1016/S0031–9422(00)82603–5
Jimenez, P.; Garcia, P.; Quitral, V.; Vasquez, K.; Parra–Ruiz, C.; Reyes–Farias, M.; Garcia–Diaz, D. F.; Robert, P.; Encina, C.; Soto–Covasich, J. Pulp, Leaf, Peel and Seed of Avocado Fruit: A Review of Bioactive Compounds and Healthy Benefits. Food Rev. Int. 2021, 37 (6), 619–655. https://doi.org/10.1080/87559129.2020.1717520
Katayama, T.; Davin, L. B.; Lewis, N. G. An extraordinary accumulation of (–)–pinoresinol in cell–free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)–pinoresinol. Phytochemistry. 1992, 31 (11), 3875–3881. https://doi.org/10.1016/S0031–9422(00)97545–9
Koeduka, T.; Fridman, E.; Gang, D. R.; Vassao, D. G.; Jackson, B. L.; Kish, C. M.; Orlova, I.; Spassova, S. M.; Lewis, N. G.; Noel, J. P.; Baiga, T. J.; Dudareva, N.; Pichersky, E. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. 2006, 103 (26), 10128–10133. https://doi.org/10.1073/pnas.0603732103
Koeduka, T.; Suzuki, S.; Iijima, Y.; Ohnishi, T.; Suzuki, H.; Watanabe, B.; Shibata, D.; Umezawa, T.; Pichersky, E.; Hiratake, J. Enhancement of production of eugenol and its glycosides in transgenic aspen plants via genetic engineering. Biochem. Biophys. Res. Comm. 2013, 436 (1), 73–78. https://doi.org/10.1016/j.bbrc.2013.05.060
Lloyd, G.; McCown, B. Commercially–feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot–tip culture. Comb. Proc. Int. Plant Prop. Soc. 1980, 30, 421–427.
Lu, F.; Ralph, J.; Morreel, K.; Messens, E.; Boerjan, W. Preparation and relevance of a cross–coupling product between sinapyl alcohol and sinapyl p–hydroxybenzoate. Org. Biomol. Chem. 2004, 2 (20), 2888–2890. https://doi.org/10.1039/b411428k
Manitto, P.; Monti, D.; Gramatica, P. Biosynthesis of anethole in Pimpinella anisum L. Tetrahedron Lett. 1974, 15 (17), 1567–1568. https://doi.org/10.1016/S0040–4039(01)82521–1
Montagna, T.; Silva, J. Z.; Pikart, T. G.; Reis, M. S. Reproductive ecology of Ocotea catharinensis, an endangered tree species. Plant Biol. 2018, 20 (5), 926–935. https://doi.org/10.1111/plb.12847
Moura–Costa, P. H.; Viana, A. M.; Mantell, S. H. In vitro plantlet regeneration of Ocotea catharinensis, an endangered Brazilian hardwood forest tree. Plant Cell, Tissue and Organ Cult. 1993, 35 (3), 279–286. https://doi.org/10.1007/BF00037282
Nehme, C. J.; Moraes, P. L. R.; Tininis, A. G.; Cavalheiro, A. J. Intraspecific variability of flavonoid glycosides and styrylpyrones from leaves of Cryptocarya mandioccana Meisner (Lauraceae). Biochem. Syst. Ecol. 2008, 36 (8), 602–611. https://doi.org/10.1016/j.bse.2008.05.001
Rossi, M. H.; Yoshida, M.; Maia, J. G. S. Neolignans, styrylpyrones and flavonoids from an Aniba species. Phytochemistry, 1997, 45 (6), 1263–1269. https://doi.org/10.1016/S0031–9422(97)00075–7
Rozo–Lugo, C.; Cuca–Suárez, L. E.; Schmidt, T. J.; Coy–Barrera, E. Tetrahydrobenzofuran–6(2H)–one Neolignans from Ocotea heterochroma: Their Platelet Activating Factor (PAF) Antagonistic Activity and in Silico Insights into the PAF Receptor Binding Mode. J. Nat. Prod. 2018, 81 (9), 1968–1975. https://doi.org/10.1021/acs.jnatprod.8b00189
Salleh, W. M. N. H. W.; Ahmad, F. Phytochemistry and biological activities of the genus Ocotea (Lauraceae): A review on recent research results (2000–2016). J. Applied Pharm. Sci. 2017, 7 (5), 204–218. https://doi.org/10.7324/JAPS.2017.70534
Sartorelli, P.; Benevides, P. J. C.; Ellensohn, R. M.; Rocha, M. V. A. F.; Moreno, P. R. H.; Kato, M. J. Enantioselective conversion of p–hydroxypropenylbenzene to (+)–conocarpan in Piper regnellii. Plant Sci. 2001, 161 (6), 1083–1088. https://doi.org/10.1016/S0168–9452(01)00512–X
Stöckigt, J.; Klischies, M. Biosynthesis of lignans: Part I. Biosynthesis of arctiin (3) and phillyrin (5). Holzforschung 1977, 31 (2), 41–44. https://doi.org/10.1515/hfsg.1977.31.2.41
Suzuki, S.; Umezawa, T. Biosynthesis of lignans and norlignans. J. Wood Sci. 2007, 53 (4), 273–284. https://doi.org/10.1007/s10086–007–0892–x
Teles, M. M. R. S.; Pinheiro, A. A. V.; Dias, C. S.; Tavares, J. F.; Barbosa Filho, J. M.; Cunha, E. V. L. Alkaloids of the Lauraceae. Alkaloids: Chem. Biol. 2019, 82, 147–304. https://doi.org/10.1016/bs.alkal.2018.11.002
Vassão, D. G.; Gang, D. R.; Koeduka, T.; Jackson, B.; Pichersky, E.; Davin, L. B.; Lewis, N. G. Chavicol formation in sweet basil (Ocimum basilicum): cleavage of an esterified C9 hydroxyl group with NAD(P)H–dependent reduction. Org. Biomol. Chem. 2006, 4 (14), 2733–2744. https://doi.org/10.1039/B605407B