Chemical, spectroscopic characterization, molecular modeling and antibacterial activity assays of a silver (I) complex with succinic acid

Main Article Content

José Alberto Paris Junior
Ana Júlia Salvador Rocchi
Bruno Torquato Biagioni
Maurício Cavicchioli
Rachel Temperani Amaral Machado
Fernando Rogério Pavan
Pedro Paulo Corbi
Wilton Rogério Lustri
Douglas Henrique Pereira
Antonio Carlos Massabni

Abstract

A silver(I) complex with succinic acid in the form of succinate is presented. Chemical characterization confirms the molecular composition Ag2C4H4O4 for the complex. Infrared spectra suggest a bidentate coordination of both carboxylate groups of succinates to the two Ag(I) ions. Density functional theory (DFT) studies were used in the structures of succinic acid and Ag(I) succinate complex with coordination formula [Ag2(C4H4O4)] in order to optimize them to their minimum energy. The studies confirmed that each carboxylate group of the succinate anion is coordinated to one silver atom by the two oxygen in a bidentate mode and the bond lengths O···Ag theoretically determined range from 2.325 to 2.338 Å. The complex [Ag2(C4H4O4)] showed in vitro antibacterial activity against the bacterial strains of Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa complex. Anti-Mycobacterium tuberculosis analyses were also performed and the [Ag2(C4H4O4)] complex was shown to be active over M. tuberculosis H37Rv strain with MIC90 of 23.94 μg mL-1 while succinic acid itself showed a value higher than 25.00 μg mL-1.

Metrics

Metrics Loading ...

Article Details

How to Cite
Paris Junior, J. A., Rocchi, A. J. S., Biagioni, B. T., Cavicchioli, M., Machado, R. T. A., Pavan, F. R., Corbi, P. P., Lustri, W. R., Pereira, D. H., & Massabni, A. C. (2021). Chemical, spectroscopic characterization, molecular modeling and antibacterial activity assays of a silver (I) complex with succinic acid. Eclética Química, 46(2), 26–35. https://doi.org/10.26850/1678-4618eqj.v46.2.2021.p26-35
Section
Original articles

References

Zaman, S. B., Hussain, M. A., Nye, R., Mehta, V., Mamun, K. T., Hossain, N., A Review on Antibiotic Resistance: Alarm Bells are Ringing, Cureus 9 (6) (2017) e1403-e1403. https://doi.org/10.7759/cureus.1403.

Silva, M., Aquino, S., Resistência aos antimicrobianos: uma revisão dos desafios na busca por novas alternativas de tratamento, Journal of Epidemiology and Infection Control 8 (4) (2018) 472-482. https://doi.org/10.17058/reci.v8i4.11580.

World Health Organization (WHO), E. coli, World Health Organization, 2018. https://www.who.int/news-room/fact-sheets/detail/e-coli.

World Health Organization (WHO), Global tuberculosis report 2018, World Health Organization, 2018. https://apps.who.int/iris/handle/10665/274453.

Cardoso, R. F., Cooksey, R. C., Morlock, G. P., Barco, P., Cecon, L., Forestiero, F., Leite, C. Q. F., Sato, D. N., Shikama, M. D., Mamizuka, E. M., Hirata, R. D. C., Hirata, M. H., Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil, Antimicrobial Agents and Chemotherapy 48 (9) (2004) 3373-3381. https://doi.org/10.1128/aac.48.9.3373-3381.2004.

Vaerewijck, M. J. M., Huys, G., Palomino, J. C., Swings, J., Portaels, F., Mycobacteria in drinking water distribution systems: ecology and significance for human health, Fems Microbiology Reviews 29 (5) (2005) 911-934. https://doi.org/10.1016/j.femsre.2005.02.001.

Bernersprice, S. J., Johnson, R. K., Giovenella, A. J., Faucette, L. F., Mirabelli C. K., Sadler, P. J., Antimicrobial and anticancer activity of tetrahedral, chelated, diphosphine silver(I) complexes - comparison with copper and gold, Journal of Inorganic Biochemistry 33 (4) (1988) 285-295. https://doi.org/10.1016/0162-0134(88)80007-2.

Gracia, C. G. de, An open study comparing topical silver sulfadiazine and topical silver sulfadiazine - cerium nitrate in the treatment of moderate and severe burns, Burns 27 (1) (2001) 67-74. https://doi.org/10.1016/s0305-4179(00)00061-9.

Klasen, H. J., Historical review of the use of silver in the treatment of burns. I. Early uses, Burns 26 (2) (2000) 117-130. https://doi.org/10.1016/s0305-4179(99)00108-4.

Nomiya, K., Yokoyama, H., Syntheses, crystal structures and antimicrobial activities of polymeric silver(I) complexes with three amino-acids aspartic acid (H2asp), glycine (Hgly) and asparagine (Hasn), Journal of the Chemical Society-Dalton Transactions (12) (2002) 2483-2490. https://doi.org/10.1039/b200684g.

Nomiya, K., Kondoh, Y., Onoue, K., Kasuga, N. C., Nagano, H., Oda, M., Sudoh, T., Sakuma, S., Synthesis and characterization of polymeric, anionic thiosalicylato-Ag(I) complexes with antimicrobial activities, Journal of Inorganic Biochemistry 58 (4) (1995) 255-267. https://doi.org/10.1016/0162-0134(94)00059-j.

Matsumura, Y., Yoshikata, K., Kunisaki, S., Tsuchido, T., Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate, Appl Environ Microbiol 69 (7) (2003) 4278-4281. https://doi.org/10.1128/aem.69.7.4278-4281.2003.

Feng, Q., Wu, J., Chen, G.-Q., Cui, F.-Z., Kim, T., Kim, J., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research 52 (4) (2000) 662-668. https://doi.org/10.1002/1097-4636(20001215)52:43.0.CO;2-3.

Liau, S. Y., Read, D. C., Pugh, W., Furr, J. R., Russell, A. D., Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions, Letters in Applied Microbiology 25 (4) (2003) 279-283. https://doi.org/10.1046/j.1472-765X.1997.00219.x.

Russell, A. D., Hugo, W. B., 7 Antimicrobial activity and action of silver, In: Progress in Medicinal Chemistry, Ellis, G. P., Luscombe, D. K., eds., Elsevier, 1994. https://doi.org/10.1016/S0079-6468(08)70024-9.

Nomiya K., Noguchi, R., Oda, M., Synthesis and crystal structure of coinage metal(I) complexes with tetrazole (Htetz) and triphenylphosphine ligands, and their antimicrobial activities. A helical polymer of silver(I) complex [Ag(tetz)(PPh3)2]n and a monomeric gold(I) complex [Au(tetz)(PPh3)], Inorganica Chimica Acta 298 (1) (2000) 24-32. https://doi.org/10.1016/s0020-1693(99)00401-6.

Nomiya, K., Noguchi, R., Shigeta, T., Kondoh, Y., Tsuda, K., Ohsawa, K., Chikaraishi-Kasuga, N., Oda, M., Synthesis and structural characterization of silver(I) and gold(I) complexes with 2-mercaptonicotinic acid (H2mna) and triphenylphosphine ligands, and their antimicrobial activities. Crystal structures of monomeric, 3-and 4-coordinate silver(I) complexes [Ag(Hmna)(PPh3)2]and [Ag(Hmna)(PPh3)3] in the solid state, Bulletin of the Chemical Society of Japan 73 (5) (2000) 1143-1152. https://doi.org/10.1246/bcsj.73.1143.

Cornils, B., Lappe, P., Dicarboxylic Acids, Aliphatic, Ullmann’s Encyclopedia of Industrial Chemistry (2000). https://doi.org/10.1002/14356007.a08_523.

Shabanova, I. V., Frolov, V. Y., Storozhenko, T. P., Zelenov, V. I., Heterometallic Nd(III) and Fe(III) Complexes with succinic acid and its derivative: synthesis and physicochemical properties, Russian Journal of Coordination Chemistry 31 (2005) 375-378. https://doi.org/10.1007/s11173-005-0107-1.

Sladkov, V., Bessonov, A. A., Roques, J., Charushnikova, I. A., Fedosseev, A. M., Complexation of An(VI) with succinic acid in aqueous acid solutions: uranyl vs. plutonyl, New Journal of Chemistry 42 (10) (2018) 7780-7788. https://doi.org/10.1039/C7NJ04061J.

Pereira, A. K. dos S., Manzano, C. M., Nakahata, D.H., Clavijo, J. C. T., Pereira, D. H., Lustri, W. R., Corbi, P. P., Synthesis, crystal structures, DFT studies, antibacterial assays and interaction assessments with biomolecules of new platinum(ii) complexes with adamantane derivatives, New Journal of Chemistry 27 (2020) https://doi.org/10.1039/D0NJ02009E.

Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics 98 (7) (1993) 5648-5652. https://doi.org/10.1063/1.464913.

Lee, C., Yang, W., Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B. 37 (1988) 785-789. https://doi.org/10.1103/PhysRevB.37.785.

Vosko, S. H., Wilk, L., Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (8) (1980) 1200-1211. https://doi.org/10.1139/p80-159.

Ditchfield, R., Hehre, W. J., Pople, J. A., Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules, The Journal of Chemical Physics 54 (2) (1971) 724-728. https://doi.org/10.1063/1.1674902.

Hehre, W. J., Ditchfield, R., Pople, J. A., Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, The Journal of Chemical Physics 56 (5) (1972) 2257-2261. https://doi.org/10.1063/1.1677527.

Hariharan, P. C., Pople, J. A., The influence of polarization functions on molecular orbital hydrogenation energies, Theoretica Chimica Acta 28 (1973) 213-222. https://doi.org/10.1007/BF00533485.

Hay, P. J., Wadt, W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg, The Journal of Chemical Physics 82 (1) (1985) 270-283. https://doi.org/10.1063/1.448799.

Frisch, J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, S., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D.J., Gaussian09, Revision D.1, Semichem Inc., Shawnee Mission, 2009.

Dennington, R., Keith, T., Millam, J., Gauss View, Semichemical Inch., Shawnee Mission, 2009.

Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Susceptibility Testing, 26th ed., Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, USA, 2016.

Lustri, W. R., Lazarini, S. C., Lustri, B. C., Corbi, P. P., Silva, M. A. C., Nogueira, F. A. R., Aquino, R., Amaral, A. C., Treu Filho, O., Massabni, A. C., Barud, H. da S., Spectroscopic characterization and biological studies in vitro of a new silver complex with furosemide: Prospective of application as an antimicrobial agent, Journal of Molecular Structure 1134 (2017) 386-394. https://doi.org/10.1016/j.molstruc.2016.12.056.

Palomino, J.-C., Martin, A., Camacho, M., Guerra, H., Swings, J., Portaels, F., Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis, Antimicrobial Agents and ChemotheraPY 46 (8) (2002) 2720-2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002.

Nelson, J. H., A Review of: “Metal Carboxalates. R.C. Mehrotra and R. Bohra, Academic Press, New York, 1983. VIII + 396 pp.,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 14 (3) (1984) 441-442. https://doi.org/10.1080/00945718408055903.

Colthup, N. B., Daly, L. H., Wiberley, S. E., Carbonyl compounds, In: Introduction to Infrared and Raman Spectroscopy (Third Edition), Colthup, N. B., Daly, L. H., Wiberley, S. E., eds., Academic Press: San Diego, California, 1990, Ch 9. https://doi.org/10.1016/B978-0-08-091740-5.50012-0.

Sun, D., Liu, F.-J., Hao, H.-J., Li, Y.-H., Huang, R.-B., Zheng, L.-S., Six low-dimensional silver(I) coordination complexes derived from 2-aminobenzonitrile and carboxylates, Inorganica Chimica Acta 387 (2012) 271-276. https://doi.org/10.1016/j.ica.2012.01.027.

Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E., Mannari, R. J., Payne, W. G., Smith, D. J., Robson, M. C., Comparative evaluation of silver-containing antimicrobial dressings and drugs, International Wound Journal 4 (2) (2007) 114-122. https://doi.org/10.1111/j.1742-481X.2007.00316.x.

Fox Júnior., C. L., Modak, S. M., Mechanism of silver sulfadiazine action on burn wound infections, Antimicrobial Agents and Chemotherapy 5 (6) (1974) 582-588. https://doi.org/10.1128/AAC.5.6.582.

Nunes, J. H. B., Paiva, R. E. F. de, Cuin, A., Lustri, W. R., Corbi, P. P., Silver complexes with sulfathiazole and sulfamethoxazole: Synthesis, spectroscopic characterization, crystal structure and antibacterial assays, Polyhedron 85 (2015) 437-444. https://doi.org/10.1016/j.poly.2014.09.010.