Evaluation of the phenyl-bonded silica-based sorbent for pre-concentration of the booster antifouling biocides Zinc Pyrithione, Zineb and Ziram using solid-phase extraction technique and Inductively Coupled Plasma Mass Spectrometry

Main Article Content

Ana Marta Cavinato Marchini Rolisola
Amauri Antônio Menegário
Lauren Nozomi Marques Yabuki
Luciana Polese
Chang Hung Kiang

Abstract

A robust method of solid-phase extraction technique with use of the phenyl-bonded silica-based sorbent (Si-PH sorbent) for pre-concentration of three booster antifouling biocides: zinc pyrithione, Zineb and Ziram in ultrapure water fortified and estuarine water sample was evaluated for zinc determination by collision cell technology-inductively coupled plasma-mass spectrometry (CCT-ICP-MS). Decontamination process to remove metals and prevent (trans-) metallization of the Si-PH sorbent with 20 mL of nitric acid 0.006 mol L-1 was performed. This proposed solid-phase extraction efficiency of three booster antifouling biocides by the phenyl-bonded silica-based sorbent (Si-PH sorbent) was evaluated in 40 mL of ultrapure water fortified sample (40 μg L-1 of the zinc biocides). The adsorption of zinc pyrithione, Zineb and Ziram were 94.2 ± 0.1%, 85.13 ± 0.04% and 93.35 ± 0.09%, respectively. The limit of detection and limit of quantification values obtained were 0.66 μg L-1 and 2.19 μg L-1, respectively. Good recoveries of zinc pyrithione (85 ± 2%), Zineb (89 ± 5%) and Ziram (111 ± 2%) in the elution step for booster antifouling biocides from the fortified estuarine water were obtained.

 

Metrics

Metrics Loading ...

Article Details

How to Cite
Rolisola, A. M. C. M., Menegário, A. A., Yabuki, L. N. M., Polese, L., & Kiang, C. H. (2020). Evaluation of the phenyl-bonded silica-based sorbent for pre-concentration of the booster antifouling biocides Zinc Pyrithione, Zineb and Ziram using solid-phase extraction technique and Inductively Coupled Plasma Mass Spectrometry. Eclética Química, 45(4), 21–31. https://doi.org/10.26850/1678-4618eqj.v45.4.2020.p21-31
Section
Original articles

References

Yebra, D. M., Kiil, S., Dam-Johansen, K., Antifouling technology—past, present, and future steps towards efficient and environmentally friendly antifouling coatings, Progress in Organic Coatings 50 (2) (2004) 75-104. https://doi.org/10.1016/j.porgcoat.2003.06.001.

Voulvoulis, N., Scrimshaw, M. D., Lester, J. N., Analytical methods for the determination of 9 antifouling paint booster biocides in estuarine water samples, Chemosphere 38 (15) (1999) 3503-3516. https://doi.org/10.1016/S0045-6535(98)00580-3.

Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J., Zaman, N., Inputs, Monitoring and Fate Modelling of Antifouling Biocides in UK Estuaries, Marine Pollution Bulletin 40 (11) (2000) 898-905. https://doi.org/10.1016/S0025-326X(00)00021-7.

Thomas, K. V., The environmental fate and behaviour of antifouling paint booster biocides: A review, Biofouling 17 (1) (2001) 73-86. https://doi.org/10.1080/08927010109378466.

Almond, K. M., Trombetta, L. D., The effects of copper pyrithione, an antifouling agent, on developing zebrafish embryos, Ecotoxicology 25 (2) (2016) 389-398. https://doi.org/10.1007/s10646-015-1597-3.

Amara, I., Miled, W., Slama, R. B., Ladhari, N., Antifouling processes and toxicity effects of antifouling paints on marine environment. A review, Environmental Toxicology and Pharmacology 57 (2018) 115-130. https://doi.org/10.1016/j.etap.2017.12.001.

Kobayashi, N., Okamura, H., Effects of new antifouling compounds on the development of sea urchin, Marine Pollution Bulletin 44 (8) (2002) 748-751. https://doi.org/10.1016/S0025-326X(02)00052-8.

Cima, F., Ballarin, L., Immunotoxicity in ascidians: Antifouling compounds alternative to organotins—IV. The case of zinc pyrithione, Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 169 (2015) 16-24. https://doi.org/10.1016/j.cbpc.2014.12.007.

Dallas, L. J., Turner, A., Bean, T. P., Lyons, B. P., Jha, A. N., An integrated approach to assess the impacts of zinc pyrithione at different levels of biological organization in marine mussels, Chemosphere 196 (2018) 531-539. https://doi.org/10.1016/j.chemosphere.2017.12.144.

Ren, T., Fu, G.-H., Liu, T.-F., Hu, K.; Li, H.-R., Fang, W.-H., Yang, X.-L., Toxicity and accumulation of zinc pyrithione in the liver and kidneys of Carassius auratus gibelio: association with P-glycoprotein expression, Fish Physiology and Biochemistry 43 (1) (2017) 1-9. https://doi.org/10.1007/s10695-016-0262-y.

Jung, S. M., Bae, J. S., Kang, S. G., Son, J. S., Jeon, J. H., Lee, H. J., Jeon, J. Y., Sidharthan, M., Ryu, S. H., Shin, H. W., Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae, Marine Pollution Bulletin 124 (2) (2017) 811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047.

Doose, C. A., Szaleniec, M., Behrend, P., Müller, A., Jastorff, B., Chromatographic behavior of pyrithiones, Journal of Chromatography A 1052 (1-2) (2004) 103-110. https://doi.org/10.1016/j.chroma.2004.08.028.

Hercegová, A., Dömötörová, M., Matisová, E., Sample preparation methods in the analysis of pesticide residues in baby food with subsequent chromatographic determination, Journal of Chromatography A 1153 (1-2) (2007) 54-73. https://doi.org/10.1016/j.chroma.2007.01.008.

Chen, Y., Guo, Z., Wang, X., Qiu, C., Sample preparation, Journal of Chromatography A 1184 (1-2) (2008) 191-219. https://doi.org/10.1016/j.chroma.2007.10.026.

Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V., Solid-phase extraction of organic compounds: A critical review (Part I), TrAC Trends in Analytical Chemistry 80 (2016) 641-654. https://doi.org/10.1016/j.trac.2015.08.015.

Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerdà, V., Solid-phase extraction of organic compounds: A critical review. part ii, TrAC Trends in Analytical Chemistry 80 (2016) 655-667. https://doi.org/10.1016/j.trac.2015.08.014.

Weissmahr, K. W., Houghton, C. L., Sedlak, D. L., Analysis of the Dithiocarbamate Fungicides Ziram, Maneb, and Zineb and the Flotation Agent Ethylxanthogenate by Ion-Pair Reversed-Phase HPLC, Analytical Chemistry 70 (22) (1998) 4800-4804. https://doi.org/10.1021/ac980626w.

Bones, J., Thomas, K. V., Paull, B., Improved method for the determination of zinc pyrithione in environmental water samples incorporating on-line extraction and preconcentration coupled with liquid chromatography atmospheric pressure chemical ionisation mass spectrometry, Journal of Chromatography A 1132 (1-2) (2006) 157-164. https://doi.org/10.1016/j.chroma.2006.07.068.

Malik, A. K., Sharma, V., Sharma, V. K., Rao, A. L. J., Column Preconcentration and Spectrophotometric Determination of Ziram and Zineb in Commercial Samples and Foodstuffs Using (1,2‘-Pyridylazo)-2-naphthol (PAN)−Naphthalene as Adsorbate, Journal of Agricultural and Food Chemistry 52 (26) (2004) 7763-7767. https://doi.org/10.1021/jf040326h.

Grunnet, K. S., Dahllof, I., Environmental fate of the antifouling compound zinc pyrithione in seawater, Environmental Toxicology and Chemistry 24 (12) (2005) 3001-3006. https://doi.org/10.1897/04-627R.1.

Bajia, S., Ojha, K. G., Synthesis, separation and determination of metal dithiocarbamates complexes by HPLC-ICP-MS, Eurasian Journal of Analytical Chemistry 8 (3) (2013) 107-111. http://www.eurasianjournals.com/Synthesis-Separation-and-Determination-of-Metal-Dithiocarbamates-Complexes-by-HPLC,79714,0,2.html.

Sakkas, V. A., Shibata, K., Yamaguchi, Y., Sugasawa, S., Albanis, T., Aqueous phototransformation of zinc pyrithione: Degradation kinetics and byproduct identification by liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry, Journal of Chromatography A 1144 (2) (2007) 175-182. https://doi.org/10.1016/j.chroma.2007.01.049.

Ahmadi, F., Rajabi, M., Faizi, F., Rahimi-Nasrabadi, M., Maddah, B., Magnetic solid-phase extraction of Zineb by C18-functionalised paramagnetic nanoparticles and determination by first-derivative spectrophotometry, International Journal of Environmental Analytical Chemistry 94 (11) (2014) 1123-1138. https://doi.org/10.1080/03067319.2014.940339.

Hashemi, F., Rastegarzadeh, S., Pourreza, N., A combination of dispersive liquid–liquid microextraction and surface plasmon resonance sensing of gold nanoparticles for the determination of ziram pesticide, Journal of Separation Science 41 (5) (2018) 1156-1163. https://doi.org/10.1002/jssc.201700992.

Thomas, K. V., Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry, Journal of Chromatography A 833 (1) (1999) 105-109. https://doi.org/10.1016/S0021-9673(98)01009-7.

Harino, H., Midorikawa, S., Arai, T., Ohji, M., Cu, N. D., Miyazaki, N., Concentrations of booster biocides in sediment and clams from Vietnam, Journal of the Marine Biological Association of the United Kingdom 86 (5) (2006) 1163-1170. https://doi.org/10.1017/S0025315406014147.

Kim, T. H., Jung, G. H., Lee, E. H., Park, H. R., Lee, J. K., Kim, H. G., Development and validation of liquid chromatography–tandem mass spectrometry method for simultaneous determination of zinc pyrithione and pyrithione in shampoos, Acta Chromatographica 30 (3) (2018) 200-205. https://doi.org/10.1556/1326.2017.00294.

Lo, C.-C., Ho, M.-H., Hung, M.-D., Use of High-Performance Liquid Chromatographic and Atomic Absorption Methods To Distinguish Propineb, Zineb, Maneb, and Mancozeb Fungicides, Journal of Agricultural and Food Chemistry 44 (9) (1996) 2720-2723. https://doi.org/10.1021/jf960008l.

Kondoh, Y., Takano, S., Determination of zinc pyrithione in cosmetic products by high-performance liquid chromatography with pre-labelling, Journal of Chromatography A 408 (1987) 255-262. https://doi.org/10.1016/S0021-9673(01)81808-2.

Agarwal, S., Aggarwal, S. G., Singh, P., Quantification of ziram and zineb residues in fog-water samples, Talanta 65 (1) (2005) 104-110. https://doi.org/10.1016/j.talanta.2004.05.041.

Kumar, P., Ahlawat, S., Chauhan, R., Kumar, A., Singh, R., Kumar, A., In vitro and field efficacy of fungicides against sheath blight of rice and post-harvest fungicide residue in soil, husk, and brown rice using gas chromatography-tandem mass spectrometry, Environmental Monitoring and Assessment 190 (9) (2018) 503. https://doi.org/10.1007/s10661-018-6897-7.

U.S. EPA, Method 6020B (SW-846): Inductively Coupled Plasma-Mass Spectrometry, Revision 2. Washington, 2014. https://www.epa.gov/esam/epa-method-6020b-sw-846-inductively-coupled-plasma-mass-spectrometry.

Hu, Z., Hu, S., Gao, S., Liu, Y., Lin, S., Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: a case study of methanol and acetone, Spectrochimica Acta Part B: Atomic Spectroscopy 59 (9) (2004) 1463-1470. https://doi.org/10.1016/j.sab.2004.07.007.

Currie, L. A., Nomenclature in evaluation of analytical methods including detection and quantification capabilities, Pure and Applied Chemistry 67 (10) (1995) 1699-1723. https://doi.org/10.1351/pac199567101699.

Phenomenex, Sample preparation – made simple – selection and users guide, Phenomenex: Torrance, 2015. http://phx.phenomenex.com/lib/BR27941114_W.pdf.

Nováková, L., Vlčková, H., A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation, Analytica Chimica Acta 656 (1-2) (2009) 8-35. https://doi.org/10.1016/j.aca.2009.10.004.

Hennion, M.-C., Solid-phase extraction: method development, sorbents, and coupling with liquid chromatography, Journal of Chromatography A 856 (1-2) (1999) 3-54. https://doi.org/10.1016/S0021-9673(99)00832-8.

Araújo, D., Machado, W., Weiss, D., Mulholland, D. S., Boaventura, G. R., Viers, J., Garnier, J., Dantas, E. L., Babinski, M., A critical examination of the possible application of zinc stable isotope ratios in bivalve mollusks and suspended particulate matter to trace zinc pollution in a tropical estuary, Environmental Pollution 226 (2017) 41-47. https://doi.org/10.1016/j.envpol.2017.04.011.

Milazzo, A. D. D., Silva, A. C. M., Oliveira, D. A. F., Cruz, M. J. M., The influence of seasonality (dry and rainy) on the bioavailability and bioconcentration of metals in an estuarine zone, Estuarine, Coastal and Shelf Science 149 (2014) 143-150. https://doi.org/10.1016/j.ecss.2014.08.013.

Vallet-Regí, M., Izquierdo-Barba, I., Colilla, M., Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 (1963) (2012) 1400-1421. https://doi.org/10.1098/rsta.2011.0258.

Sigma-Aldrich Co., Guide to Solid Phase Extraction, Bulletin 910, 1998. https://www.sigmaaldrich.com/Graphics/Supelco/objects/4600/4538.pdf.