Potencialidades analíticas do dietilditiofosfato de amônio em espectrometria de massas com plasma indutivamente acoplado empregando extração em fase sólida e sistemas de injeção em fluxo

Main Article Content

José Anchieta Gomes Neto
Adilson José Curtius
Valderi Luís Dressler

Abstract

Um sistema de injeção em fluxo envolvendo complexação com dietilditiofosfato de amônio e sorção de complexos metálicos em minicolunas de sílica gel modificada por grupos octadecil C18, é proposto para determinações multielementares em espectrometria de massa com plasma indutivamente acoplado. Influência da concentração de reagentes, natureza do ácido, tempo de reação, tempos de comutação, vazões e interferência de sódio foram investigadas. Água ou solução 2% (v/v) HNO3 podem ser utilizadas para lavar a coluna antes da eluição dos analitos com etanol. Amostras contendo 5.000 mg Na L-1 e analisadas diretamente com o sistema proposto produzem uma concentração aparente de 63Cu de 0,45 µg L-1; por outro lado não foi observada interferência para As, Pb, Bi, Se, In, Tl, Cd, Hg e 65Cu. Para 0,25 % (m/v) ADTP4DTP e 3 mL de solução de amostra, curvas analíticas para Bi, Cu, Pb, As, Se, In, Tl, Cd, Hg no intervalo de 0,10 a 2,00 µg L-1, podem ser construídas com boas correlações (r2 > 0.998). A velocidade analítica e sensibilidade podem ser melhoradas, pois dependem das condições de pré-concentração e eluição selecionadas. Limites de detecção: 0,014(Cu), 0,027(As), 0,06(Se), 0,02(Cd), 0,029(In), 0,043(Hg), 0,02(Tl), 0,06(Pb) e 0,002 µg L-1(Bi).

Metrics

Metrics Loading ...

Article Details

How to Cite
Gomes Neto, J. A., Curtius, A. J., & Dressler, V. L. (1999). Potencialidades analíticas do dietilditiofosfato de amônio em espectrometria de massas com plasma indutivamente acoplado empregando extração em fase sólida e sistemas de injeção em fluxo. Eclética Química, 24(1), 69–89. https://doi.org/10.26850/1678-4618eqj.v24.1.1999.p69-89
Section
Original articles

References

AMARISIRIWARDENA, D., KRUSHEVSKA, A., FONER, H., ARGENTINE, M.D., BARNES, R.M. Sample preparation for inductively coupled plasma mass spectrometry determination of the zinc-70 to Zn68 isotope ratio in biological samples. J Anal. At. Spectrom., v.7, p.915-21, 1994.

AZEREDO, M.A.A. Um método de pré-concentração em linha para a determinação de metais traço em águas naturais por espectrometria de massa com plasma indutivamente acoplado. Rio de Janeiro, 1993. Tese (Doutorado) – Pontificia Universidade Católica do Rio de Janeiro.

BEAUCHEMIN, D., MCLAREN, J.W., BERMAN, S.S. Study of the effects of concomitant elements in inductively coupled plasma mass spectrometry. Spectrochim. Acta (London), v.42B, p.467-90, 1987.

BODE, H.; ARNSWALD, W. Substituted dithiophosphate I. Diethyl dithiophosphoric acid and its sodium salt. Z. Anal. Chem. (Wiesbaden), v.185, p.99-100, 1962.

________. Substituted dithiophosphate III. Gravimetric determination with diethyl dithiophosphoric acid. Z. Anal. Chem. (Wiesbaden), v.193, p.415-33, 1963.

BRANCH, S., EBDON, L., FORD, M., FOULKES, M., OINEILL, P. Determination of arsenic in samples with high chloride content by inductively coupled plasma mass spectrometry. J Anal. At. Spectrom. (London), v.6, p.151-54, 1991.

CASTILLANO, T.M., GIGLIO, J.J., CARUSO, J.A. Evaluation of low pressure inductively coupled plasma mass spectrometry for the analysis of gaseous samples. J Anal. At. Spectrom. (London), v.9, p.1335-40, 1994.

CRAIG, J.M., BEAUCHEMIN, D. Reduction of the effects of concomitant elements in inductively coupled plasma mass spectrometry by adding nitrogen to the plasma gas. J Anal. At. Spectrom. (London), v.7, p.937-62, 1992.

DATE, A.R. & GRAY, A. L. Applications of Inductively Coupled Plasma Mass Spetrometry. New York: Blackie, 1989. 254p.

DOUGLAS, D.J., KEER, L.A. Study of solids deposits on inductively coupled plasma mass spectrometry samplers and skimmers. J Anal. At. Spectrom. (London), v.3, p.749-52, 1988.

DURRANT, S.F., KRUSHEVSKA, A., AMARISIRIWARDENA, D., ARGENTINE, M.D., ROMON-GUESNIER, S., BARNES, R.M. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry. J Anal. At. Spectrom. (London), v.9, p.199-204, 1994.

EBDON, L., FISHER, A.S., WORSFOLD, P.J., CREWS, H., BAXTER, M. On line removal of interferences in the analysis of biological materials by flow-injection inductively coupled plasma mass spectrometry. J Anal. At. Spectrom. (London), v.8, p.691-95, 1993.

EVANS, E.H.; EBDON, L. Effect of organic solvent and molecular gases on polyatomic ion interferences in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. (London), v.5, p.425-29, 1990.

EVANS, E.H., GIGLIO, J.J. Interferences in inductively coupled plasma mass spectrometry. A review. J Anal. At. Spectrom. (London), v.8, p.1-18, 1993.

GOOSSENS, J., DAMS, R. Anion-exchange for the determination of spectral interference caused by chloride and sulfur in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. (London), v.7, p.1167-71, 1992.

GOOSSENS, J., MOENS, L., DAMS, R. Anion-exchange for the determination of arsenic and selenium by inductively coupled plasma mass spectrometry. J Anal. At. Spectrom. (London), v.8, p.921-26, 1993.

JARVIS, K.E., GRAY, A.L., HOUK, R.S. Handbook of Inductively Coupled Plasma Mass Spectrometry. 1st ed. New York: Blackie, 1992. 380p.

LYON, T.D.B., FELL, G.S., HUTTON, R.C., EATON, A.N. Evaluation of inductively coupled plasma mass spectrometry (ICP-MS) for simultaneous multi-element trace analysis in clinical-chemistry. J Anal. At. Spectrom. (London), v.3, p.265-71, 1988.

MCLAREN, J.W., BEAUCHEMIN, D., BERMAN, S.S. Applications of isotopic dilution inductively coupled plasma mass spectrometry to the analysis of marine sediments. Anal. Chem. (Washington), v.59, p.610-13, 1987.

NICKSON, R.A., HILL, S.J., WORSFOLD, P.J. Solid phase techniques for the preconcentration of trace metals from natural waters. Anal. Proc. Anal. Commun. (London), v.32, p.387-95, 1995.

POZEBON, D., DRESSLER, V.L., CURTIUS, A.J. Determination of copper, cadmium, lead, bismuth and selenium(IV) in sea-water by electrothermal vaporization inductively coupled plasma mass spectrometry after on-line separation. J. Anal. At. Spectrom. (London), v.13, p.363-69, 1998.

POZEBON, D., DRESSLER, V.L., GOMES NETO, J. A., CURTIUS, A.J. Determination of arsenic(III) and arsenic(V) by electrothermal atomic absorption spectrometry after complexation and sorption on a C18 bonded silica column. Talanta (London), v.45, p.1167-75, 1998.

RIVOLDINI, A., FADDA, S. Inductively coupled plasma mass spectrometry determination of low levels rare-earth elements in rocks using potassium-based fusion for sample decomposition. J Anal. At. Spectrom. (London), v.9, p.519-24, 1994.

RUZICKA, J. & HANSEN, E.H.. Flow Injection Analysis. New York: John Wiley, 1988.

SLAVIN, W. A comparison of atomic spectroscopy analytical techniques. Spectrosc. Int. (Eugene), v.4, p.22-7, 1995.

VANHOE, H., GOOSSENS, J., MOENS, L. AND DAMS, R. Spectral interferences encountred in the analysis of biological materials by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom.(London),v.9, p.177-85, 1994.

XIAO, G., BEAUCHEMIN, D. Reduction of matrix effects and mass discrimination in inductively coupled plasma mass spectrometry with optimized argon-nitrogen plasmas. J. Anal. At. Spectrom. (London), v.9, p.509-18, 1994.