Abstract
This work describes the development of an alternative acetate bath for the electrochemicalcodeposition of Ni-Cu-Fe electrodes at low pH that is stable for several weeks and produces electrodes
with good performance for chlor-alkali electrolysis. Physical characterization of the electrode surface
was made using X ray absorption spectroscopy (XAS), scanning electron microscopy (SEM) and energy
dispersive analysis (EDX). The evaluation of the material as electrocatalyst for the hydrogen evolution
reaction (her) was carried out in brine solution (160 g L -1 NaCl + 150 g L -1 NaOH) at different temperatures
through steady-state polarization curves. The Ni-Cu-Fe electrodes obtained with this bath have shown
low overpotentials for the her, around 0.150 V at 353 K, and good stability under continuous long-term
operation for 260 hours. One positive aspect of this cathode is that the polarization behavior of the
material shows only one Tafel slope over the temperature range of 298 – 353 K.
References
S. Trasatti. Electrocatalysis of Hydrogen Evolution Progress
in Cathode Activation. In: Gerischer, H. and Tobias, C. W.
Advances in Electrochemical Science and Enginnering, Vol.
, Weinheim, VCH, 1991.
I. Arul raj, K. I. J. Vasu. Appl. Electrochem. 20 (1990)32.
J. De Carvalho, G. Tremiliosi-Filho, L. A. Avaca, E. R.
Gonzalez. Int. J. Hydrogen Energy 14 (1989) 161.
J. De Carvalho, G. Tremiliosi-Filho, L. A. Avaca, E. R.
Gonzalez. In S. Srinivasan, S. Wagner and H. Wroblowa (Eds.)
Electrode Materials and Processes for Energy Conversion and
Storage, The Electrochemical Society, Pennington, New Jersey,
v.87-12, p.356, 1987.
M. J. Giz, S. A. S. Machado, L. A. Avaca, E. R. Gonzalez.
J. Appl. Electrochem. 22 (1992) 973.
M. J. Giz, G. Tremiliosi-Filho, E. R. Gonzalez, S. Srinivasan,
A. J. Appleby. Int. J. Hydrogen Energy 20 (1995) 423.
M. J. Giz, S. C. Bento, E. R. Gonzalez. Int. J. Hydrogen
Energy 25 (2000) 621.
B. E. Conway, J. O ́Bockris. J. Chem. Phys. 26 (1957)
J. M. Jaksic, N. V. Krstajic, B. N. Grgur, M. M. Jaksic. Int.
J. Hydrogen Energy 23(1998) 667.
J. McBreen, S. Mukerjee. J. Electrochem. Soc. 142 (1995)
S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N.
Grgur, N. M Markovic, P. N. Ross, J. R. Giallombardo, E. S.
De Castro. Electrochem. Solid State Letters 2 (1999) 12.
J. McBreen. In Situ Synchrotron Techniques in
Electrochemistry. In: Rubinstein, I. Physical Electrochemistry:
Principles, Methods and Applications, Marcel Dekker Inc., NY, Cap. 8, 1995.
D. A. Tryk, I. T. Bae, Y. Hu, S. Kim, M. R. Antonio, D. A
Scherson. J. Electrochem. Soc. 142 (1995) 824.
E. A. Ticianelli, S. Mukerjee, J. McBreeN, G. D. Adzic,
J. R Johnson, J. J. Reilly. J. Electrochem. Soc. 146 (1999) 3582.
A. N. Mansour, C. A. Melendres, M. Pankuch, R. A.
Brizzolara. J. Electrochem. Soc.141 (1994) L69.
. A. N. Mansour, J. McBreen; C. A. Melendres. J.
Electrochem. Soc. 146 (1999) 2799.
H. Tolentino, J. C. Cezar, D. Z. Cruz, V. Compagnon-
Caillol, E. Tamura, M. C. Alves. J. Synchrotron Radiation 5
(1998) 521.
T. Ressler. J. Phys IV C2 (1997) 269.
. J. B. A. D. Van Zon, D. C. Koningsberger, H. F. J. Van’t Blik, D. E. Sayers. J. Chem. Phys. 82 (1985) 5742.
R. J. Iwanowski, K. Lawniczak-Jablonska, Z. Golacki,
A. Traverse. Chem. Phys. Letters 283 (1998) 313.
V. G. Harris, K. M. Kemner, B. N. Das, N. C. Koon, A. E.
Ehrlich, J. P. Kirkland, J. C. Woicik, P. Crespo, A. Ernando,
A. Garcia Escorial. Phys. Review B. 54 (1996) 6929.
I. Nakabayashi, E. NagaO, K. iyata, T. Moriga, T. Ashida, T.
TomidA, M. Hyland, J. Metson. J. Mater. Chem. 5 (1995) 737.
B. E. Conway, D. F. Tessier, D. P. Wilkinson. J.
Electrochem. Soc. 134 (1989) 2486.
B. E. Conway, L. Bai. Int. J. Hydrogen Energy 111 (1986)
H. Wendt, V. Plzak. Electrochim. Acta 28 (1983) 27.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Eclética Química Journal