Immersion enthalpy variation of surface-modified mineral activated carbon in lead (II) aqueous solution adsorption: the relation between immersion enthalpy and adsorption capacity

Main Article Content

Liliana Giraldo Gutierrez
Juan Carlos Moreno-Piraján

Abstract

An activated carbon was obtained by chemical activation with phosphoric acid, CM, from
a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL -1 , CMox2 and CMox5 nitric
acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb 2+
adsorption isotherms were determined by immersing activated carbons in aqueous solution. The
surface area values of the adsorbents and total pore volume were approximately 560 m 2 .g -1 and 0.36
cm 3 g -1 , respectively. As regards chemical characteristics, activated carbons had higher acid sites
content, 0.92-2.42 meq g -1 , than basic sites, 0.63-0.12 meq g -1 . pH values were between 7.4 and 4.5 at
the point of zero charge, pH PZC. The adsorbed quantity of Pb 2+ and the immersion enthalpy in solution
of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7
mgg -1 and 27.6 Jg -1 respectively. Pb 2+ adsorption isotherms and immersion enthalpy were determined
for modified activated carbons and the highest values were obtained for the activated carbon that
showed the highest content of total acid sites on the surface.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gutierrez, L. G., & Moreno-Piraján, J. C. (2006). Immersion enthalpy variation of surface-modified mineral activated carbon in lead (II) aqueous solution adsorption: the relation between immersion enthalpy and adsorption capacity. Eclética Química, 31(4), 15–21. https://doi.org/10.26850/1678-4618eqj.v31.4.2006.p15-21
Section
Original articles

References

C. Moreno-Castilla, Carbon 42 (2004) 83-94.

L. R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla, In:

Chemistry and Physics of Carbon, A Series of Advances, Ed

Marcel Dekker, New York, 2000, 293-297.

Y. Kikuchi, Q. Quian, M. Machida, H.Tatsumoto, Carbon

(2006) 195-202.

M. Machida, Y. Kikuchi, M. Aikawa, H. Tatsumoto, A:

Physicochem Eng Aspects, Colloids Surf 240 (2004) 79-86.

A. Macias-García, C. Valenzuela-Calahorro, A. Espinosa-

Mansilla, A. Bernalte-Garcia, B. Gómez-Serrano, Carbon 42

(2004) 1755-1764.

M. Fan, T. Boonfueng,Y. Xu, L. Axe, T. A. Tyson, J.

Colloid of Interface Science 281 (2005) 39-48.

L.Giraldo, J. C. Moreno, Revista Colombiana de Química

(2) (2004) 87-97.

F. Rodríguez-Reinoso, Encyclopedia of Materials, Scien-

ce and Technology, New York, 2001, 22-30.

M.C. Baquero, L. Giraldo, J. C. Moreno, F. Suárez-

García, A. Martínez-Alonso, J. Tascón JMD, Appl. Pyrolysis

(2003) 779-784.

A. Abdel-Naser, Hendawy-El, Carbon 41 (2003) 713-722.

H.P. Boehm, Advances in Catalysis, D.D. Eley, H. Pines,

P.B.Weisz, Eds. Academic Press. New York., 1966,192-200.

F.S. Mohamed, W.A. Khater, M.R. Mostafa, Chem. Eng.

Journal 116 (2006) 47-52.

M. Kosmulski, J. Colloid. Inter. Scien. 275 (2004) 214-224.

L.Giraldo, J.C. Moreno, J.I.Huertas, Instrumentation

Science & Technology. 30(2) (2002) 177-186.

F. Rodríguez-Reinoso, Activated carbon: structure, char-

acterization, preparation and applications. En: Introduction to

carbon technologies. Universidad de Alicante (Publica-

ciones). Alicante, España.,1997, 60-70.

A. Linares-Solano, J. Martín-Gullon, C. Salinas-Martínez

de Lecea, B. Serreno-Talavera, Fuel 79 (2000) 635-643.

M. A.Lillo-Ródano, D. Lozano-Castelló, D. Cazorla-

Amorós, A. Linares-Solano, Carbon 39 (2001) 751-759.

K. Laidler, J.Meiser, Fisicoquímica, Ed. Cecsa, México,

ed 2th , 2002, 234-260.