Analysis of the structure and vibrational spectra of glucose and fructose
PDF

Keywords

FTIR
D-glucose
D-fructose
alpha-anomer
semiempirical calculations
density functional theory

How to Cite

Ibrahim, M. A., Allam, M., El-Haes, H., Jalbout, A. F., & de Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Eclética Química, 31(3), 15–21. https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21

Abstract

Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well
as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the struc-
ture and vibrational spectra of d-glucose and d-fructose in their open chain, α-anomer and β-anomer
monohydrate forms. The calculated data show that both molecules are not linear; ground state and the
number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in
bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study
both the structural and vibrational spectra of glucose and fructose.
https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21
PDF

References

R. A. Dwek, Chem. Rev. 96 (1996) 683-720.

R. W. Binkley, Modern carbohydrate chemistry, M.

Dekker Inc., New York., 1988.

Z. Gyöwrgydeak and I. Pelyvas,

Monoscaccharide

sugars, Academic press, New York, 1998.

J. Madox, Nature 364 (1993) 669-703.

Galema, S. A. Blandamera, M. J. and Engberts, J. B. F. N.,

J. Org. Chem. 57 (1992) 1995-2001.

A. R. Leach, Molecular Modelling Principles and

Applications, Longman, Essex. 1996.

N. Reuter, A. Dejaegere, B. Maigret and M. Karplus, J.

Phys. Chem.A. 104 (2000) 1720-1735.

J. Gao, Acc. Chem. Res. 29 (1996) 298-305.

M. A. Cunningham, L. L. Ho, D. T. Nguyen, R. E. Gillilan

and P. A. Bash, Biochemistry, , M. A. 36 (1997) 4800-4816.

M. S. Cheung, I. Daizadeh, A. A. Stuchebrukhov and P.

F. Heelis, Biophys. J. 76 (1999) 1241-1249.

K. P. Eurenius, D. C. Chatfield, B. R. Brooks and M.

Hodoscek, Intern. J. Quant. Chem. 60 (1996) 1189-1200.

C. Molteni and M. Parrinello, Cem. Phys. Lett. 275

(1997) 409-413.

F. A. Momany, M. Appell, G. Strati and J. L. Willett,

Carbohydrate Research 339 (2004) 553-567.

C. Arujo-Andrade, F. Ruiz, J. R. Martinez-Mendoza and

H. Terrones, J. Mol. Struct. THEOCHEM. 714 (2005) 143-

J. Behler, D. W. Price and M. G. B. Drew, Phys. Cehm.

Chem. Phys. 3 (2001) 588-601.

A. Michael, J. L. Willett and F. A. Momany,

Carbohydrate Research 340 (2005) 459-468.

F. B. Alasdair, H. Lutz and D. B. Laurence,

Spectrochimica Acta A. 51 (1995) 1367-1378.

M. Mathlouthi, F. Hutteau and J. F. Angibous, Food

Chemistry 56 (1996) 215-221.

L. Hai and L. Bernhard, Analytica Chimica Acta 422

(2000) 63-69.

S. Pavlovic and P. R. G. Brandao, Minerals Engineering

(2003) 1117-1122.

P. Galgali, U. S. Puntambekar, D. V. Gokhale and A. J.

Varma, Carbohydrate Polymers 55 (2004) 393-399.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P.

Stewart, J. Am. Chem. Soc. 107 (1985) 3902-3909.

J. J. P. Stewart, J. Comp. Chem. 10 (1989) 209-220.

J. S. D. Michael and T. Walter, J. Am. Chem. Soc. 99

(1977) 4899-4907.

J. B. Foresman and A. Frisch, Exploring chemistry with

electronic structure methods, 2nd ed., Gaussian Inc., 1996.

A. Komornicki and G. Fitzgerald, J. Chem. Phys. 98

(1993) 1398.

J. Guo and X. Zhang, Carbohydrate Research 339 (2004)

-1426.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química Journal

Metrics

PDF views
175
Jan 2007Jul 2007Jan 2008Jul 2008Jan 2009Jul 2009Jan 2010Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202611
|
Crossref
1