Analysis of the structure and vibrational spectra of glucose and fructose

Main Article Content

Medhat Ahmed Ibrahim
Mousa Allam
Hanan El-Haes
Abraham F. Jalbout
Aned de Leon

Abstract

Molecular modelling using semiempirical methods AM1, PM3, PM5 and, MINDO as well
as the Density Functional Theory method BLYP/DZVP respectively were used to calculate the struc-
ture and vibrational spectra of d-glucose and d-fructose in their open chain, α-anomer and β-anomer
monohydrate forms. The calculated data show that both molecules are not linear; ground state and the
number for the point-group C is equal to 1. Generally, the results indicate that there are similarities in
bond lengths and vibrational modes of both molecules. It is concluded that DFT could be used to study
both the structural and vibrational spectra of glucose and fructose.

Metrics

Metrics Loading ...

Article Details

How to Cite
Ibrahim, M. A., Allam, M., El-Haes, H., Jalbout, A. F., & de Leon, A. (2006). Analysis of the structure and vibrational spectra of glucose and fructose. Eclética Química, 31(3), 15–21. https://doi.org/10.26850/1678-4618eqj.v31.3.2006.p15-21
Section
Original articles

References

R. A. Dwek, Chem. Rev. 96 (1996) 683-720.

R. W. Binkley, Modern carbohydrate chemistry, M.

Dekker Inc., New York., 1988.

Z. Gyöwrgydeak and I. Pelyvas,

Monoscaccharide

sugars, Academic press, New York, 1998.

J. Madox, Nature 364 (1993) 669-703.

Galema, S. A. Blandamera, M. J. and Engberts, J. B. F. N.,

J. Org. Chem. 57 (1992) 1995-2001.

A. R. Leach, Molecular Modelling Principles and

Applications, Longman, Essex. 1996.

N. Reuter, A. Dejaegere, B. Maigret and M. Karplus, J.

Phys. Chem.A. 104 (2000) 1720-1735.

J. Gao, Acc. Chem. Res. 29 (1996) 298-305.

M. A. Cunningham, L. L. Ho, D. T. Nguyen, R. E. Gillilan

and P. A. Bash, Biochemistry, , M. A. 36 (1997) 4800-4816.

M. S. Cheung, I. Daizadeh, A. A. Stuchebrukhov and P.

F. Heelis, Biophys. J. 76 (1999) 1241-1249.

K. P. Eurenius, D. C. Chatfield, B. R. Brooks and M.

Hodoscek, Intern. J. Quant. Chem. 60 (1996) 1189-1200.

C. Molteni and M. Parrinello, Cem. Phys. Lett. 275

(1997) 409-413.

F. A. Momany, M. Appell, G. Strati and J. L. Willett,

Carbohydrate Research 339 (2004) 553-567.

C. Arujo-Andrade, F. Ruiz, J. R. Martinez-Mendoza and

H. Terrones, J. Mol. Struct. THEOCHEM. 714 (2005) 143-

J. Behler, D. W. Price and M. G. B. Drew, Phys. Cehm.

Chem. Phys. 3 (2001) 588-601.

A. Michael, J. L. Willett and F. A. Momany,

Carbohydrate Research 340 (2005) 459-468.

F. B. Alasdair, H. Lutz and D. B. Laurence,

Spectrochimica Acta A. 51 (1995) 1367-1378.

M. Mathlouthi, F. Hutteau and J. F. Angibous, Food

Chemistry 56 (1996) 215-221.

L. Hai and L. Bernhard, Analytica Chimica Acta 422

(2000) 63-69.

S. Pavlovic and P. R. G. Brandao, Minerals Engineering

(2003) 1117-1122.

P. Galgali, U. S. Puntambekar, D. V. Gokhale and A. J.

Varma, Carbohydrate Polymers 55 (2004) 393-399.

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P.

Stewart, J. Am. Chem. Soc. 107 (1985) 3902-3909.

J. J. P. Stewart, J. Comp. Chem. 10 (1989) 209-220.

J. S. D. Michael and T. Walter, J. Am. Chem. Soc. 99

(1977) 4899-4907.

J. B. Foresman and A. Frisch, Exploring chemistry with

electronic structure methods, 2nd ed., Gaussian Inc., 1996.

A. Komornicki and G. Fitzgerald, J. Chem. Phys. 98

(1993) 1398.

J. Guo and X. Zhang, Carbohydrate Research 339 (2004)

-1426.