Potentiometric quantification and speciation of oxygenated groups in humic substances using BEST7 software
PDF

Keywords

humic substances
potentiometry
BEST7 software

How to Cite

Vaz, D. de O., Neves Fernandes, A., Szpoganicz, B., & Sierra, M. M. de S. (2010). Potentiometric quantification and speciation of oxygenated groups in humic substances using BEST7 software. Eclética Química, 35(4), 147–152. https://doi.org/10.26850/1678-4618eqj.v35.4.2010.p147-152

Abstract

In this study the BEST7 software was employed to quantify different classes of functional groups and to model the proton titration behavior of humic substances. To illustrate the process, the Suwannee River fulvic acid of the IHSS (International Humic Substances Society) was used. Five categories – two classes of phenolic groups (phenol and cathecol), two classes of carboxylic groups (benzoic and phtalic) and the combination between them (salicylic) - of oxygenated groups were considered as being responsible for the potentiometric behavior of the sample and were quantitatively determined. The most and the least abundant groups were cathecol (3.300 0.010 mmol g-1) and phenol (1.225 0.070 mmol g-1), respectively. The estimated equilibrium constants were also determined and were in good agreement with the literature values for phenol and cathecol groups and for benzoic, phtalic and salicylic acids. Distribution diagrams of the species were generated with the software SPE and SPEPLOT.
https://doi.org/10.26850/1678-4618eqj.v35.4.2010.p147-152
PDF

References

D. L. Sparks, Geoderma 100 (2001) 303.

G. de la Rosa, J. R. Peralta-Videa, J. L. Gardea-Torresdey, J. Hazard. Mater. 97 (2003) 207.

R. A. Alvarez-Puebla, C. Valenzuela-Calahorro, J. J. Garrido, Sci. Total Environ. 358 (2006) 243.[4] I. Kögel-Knauber, Org. Geochem. 31 (2000) 609.

J. A. González-Pérez, F. J. González-Vila, G. Almendros, M. C. Zancada, O. Polvillo, F. Martín, J. Anal. Appl. Pyrolysis 68-69 (2003) 287.

P. Faure, L. Schlepp, L. Mansuy-Huault, M. Elie, E. Jardé, M. Pelletier, J. Anal. Appl. Pyrolysis 75 (2006) 1.

A. Piccolo, S. Nardi, G. Concheri, Chemosphere 33 (1996) 595.

A. Cozzolino, P. Conte, A. Piccolo, Soil Biol. Biochem. 33 (2001) 563.

J. R. Lead, K. J. Wilkinson, E. Balnois, B. J. Cutak, C. K. Larive, S. Assemi, R. Beckett, Environ. Sci. Technol. 34

(2000) 3508.[10] C. S. Ragle, R. R. Engebretson, R. Von Wandruszka, Soil Sci. 162 (1997) 106.[11] M. M. D Sierra, T. G. Rauen, L. Tormen, N. A. Debacher, E. J. Soriano-Sierra, Water Res. 39 (2005) 3811.

N. Calace, N. Cardellicchio, B. M. Petronio, M. Pietrantonio, M. Pietroletti, Mar. Environ. Res. 61 (2006) 40.

M. M. D. Sierra, K. Arend, A. N. Fernandes, M. Giovanela, B. Szpoganicz, Anal. Chim. Acta 445 (2001) 89.

A. N. Fernandes, M. Giovanela, E. J. Soriano-Sierra, M. M. D. Sierra, J. Coast. Res. 39 (2006) 1062.

A. N. Fernandes, C. Giacomelli, M. Giovanela, D. O. Vaz, B. Szpoganicz, M. M. D. Sierra, J. Braz. Chem. Soc. 20 (2009) 1715.

A. H. J Gillam, P. Riley, Anal. Chim. Acta 1982 (141) 287.

A. E Martell, R. J. Motekaitis, VCH Publishers: New York, 1992.

G. Gran, Analyst 77 (1952) 661.

M. Schnitzer, U. C. Gupta, Soil Scie. Soc. Am. 29 (1965) 274.

M. M. D. Sierra, A. N. Fernandes, B. Szpoganicz, Talanta 62 (2004) 687.[21] A. E. Martell, R. M. Smith, R. J. Motekaitis, US Department of Commerce: Gaithesburg, 2004.[22] S. H. Sutheimer, M. J. Ferraco, S. E. Cabaniss, Anal. Chim. Acta 304 (1995) 187.

J. A. Leenheer, R. L. Wershaw, M. M. Reddy, Environ. Sci. Technol. 29 (1995) 393.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química Journal

Metrics

PDF views
309
Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202631
|