Seleção de variáveis para categorização de amostras químicas
PDF

Keywords

Variable selection
Chemical samples
PLS regression

How to Cite

Anzanello, M. J. (2014). Seleção de variáveis para categorização de amostras químicas. Eclética Química, 36(4), 28–33. https://doi.org/10.26850/1678-4618eqj.v36.4.2011.p28-33

Abstract

This paper presents a method to select the best variables to categorize chemical samples into two classes, say conforming or non-conforming. For that matter, PLS regression is combined with a data mining tool, the k-Nearest Neighbor classification technique, through an iterative variable selection process. The recommended subset of variables is chosen based on several criteria: sensitivity, specificity and percent of retained variables. When applied to two datasets related to wine analysis and one associated to QSAR, the proposed method significantly reduced the number of variables required for classification, while yielding superior categorization performance when compared to using all original variables.

https://doi.org/10.26850/1678-4618eqj.v36.4.2011.p28-33
PDF
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Eclética Química Journal

Metrics

PDF views
292
Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202618
|